This document has been prepared to conform to the current released version of the product. Because of our extensive development efforts and our desire to further improve and enhance the product, inconsistencies may exist between the product and documentation in some instances. Call your customer support representative if you encounter an inconsistency.
Customer Support

Control Techniques
12005 Technology Drive
Eden Prairie, Minnesota 55344-3620
U.S.A.

Telephone: (952) 995-8000 or (800) 397-3786

It is Control Techniques’ goal to ensure your greatest possible satisfaction with the operation of our products. We are dedicated to providing fast, friendly, and accurate assistance. That is why we offer you so many ways to get the support you need. Whether it’s by phone, fax or modem, you can access Control Techniques support information 24 hours a day, seven days a week. Our wide range of services include:

FAX (952) 995-8099

You can FAX questions and comments to Control Techniques. Just send a FAX to the number listed above.

Website and Email www.emersonct.com

Website: www.emersonct.com
Email: info@emersonct.com

If you have Internet capabilities, you also have access to technical support using our website. The website includes technical notes, frequently asked questions, release notes and other technical documentation. This direct technical support connection lets you request assistance and exchange software files electronically.

Technical Support (952) 995-8033 or (800) 397-3786

Email: service@emersonct.com

Control Techniques “Motion Made Easy” products are backed by a team of professionals who will service your installation. Our technical support center in Eden Prairie, Minnesota is ready to help you solve those occasional problems over the telephone. Our technical support center is available 24 hours a day for emergency service to help speed any problem solving. Also, all hardware replacement parts, if needed, are available through our customer service organization.

When you call, please be at your computer, with your documentation easily available, and be prepared to provide the following information:

• Product version number, found by choosing About from the Help menu
• The type of controller or product you are using
• Exact wording of any messages that appear on your screen
• What you were doing when the problem occurred
• How you tried to solve the problem

Need on-site help? Control Techniques provides service, in most cases, the next day. Just call Control Techniques’ technical support center when on-site service or maintenance is required.

Training Services
(952) 995-8000 or (800) 397-3786

Email: training@emersonct.com

Control Techniques maintains a highly trained staff of instructors to familiarize customers with Control Techniques’ “Motion Made Easy” products and their applications. A number of courses are offered, many of which can be taught in your plant upon request.

Application Engineering
(952) 995-8000 or (800) 397-3786

Email: applengr@emersonct.com

An experienced staff of factory application engineers provides complete customer support for tough or complex applications. Our engineers offer you a broad base of experience and knowledge of electronic motion control applications.

Customer Service (Sales)
(952) 995-8000 or (800) 397-3786

Email: customer.service@emersonct.com

Authorized Control Techniques distributors may place orders directly with our Customer Service department. Contact the Customer Service department at this number for the distributor nearest you.

Document Conventions

Manual conventions have been established to help you learn to use this manual quickly and easily. As much as possible, these conventions correspond to those found in other Microsoft® Windows® compatible software documentation.

Menu names and options are printed in bold type: the File menu.

Dialog box names begin with uppercase letters: the Axis Limits dialog box.

Dialog box field names are in quotes: “Field Name.”

Button names are in italic: OK button.

Source code is printed in Courier font: Case ERMS.
In addition, you will find the following typographic conventions throughout this manual.

<table>
<thead>
<tr>
<th>This</th>
<th>Represents</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Characters that you must type exactly as they appear. For example, if you are directed to type <code>a:setup</code>, you should type all the bold characters exactly as they are printed.</td>
</tr>
<tr>
<td>italic</td>
<td>Placeholders for information you must provide. For example, if you are directed to type <code>filename</code>, you should type the actual name for a file instead of the word shown in italic type.</td>
</tr>
<tr>
<td>ALL CAPITALS</td>
<td>Directory names, file names, key names, and acronyms.</td>
</tr>
<tr>
<td>SMALL CAPS</td>
<td>Non-printable ASCII control characters.</td>
</tr>
<tr>
<td>KEY1+KEY2 example: (Alt+1)</td>
<td>A plus sign (+) between key names means to press and hold down the first key while you press the second key.</td>
</tr>
<tr>
<td>KEY1,KEY2 example: (Alt,F)</td>
<td>A comma (,) between key names means to press and release the keys one after the other.</td>
</tr>
</tbody>
</table>

WARNING

“Warning” indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION

“Caution” indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury.

CAUTION

“Caution” used without the safety alert symbol indicates a potentially hazardous situation that, if not avoided, may result in property damage.

Note

For the purpose of this manual and product, “Note” indicates essential information about the product or the respective part of the manual.

Throughout this manual, the word “drive” refers to an MDS.

Throughout this manual, the word “FM-3” refers to an FM-3, FM-3DN or FM-3PB.

Throughout this manual, the word “FM-4” refers to an FM-4, FM-4DN or FM-4PB.
Safety Instructions

General Warning
Failure to follow safe installation guidelines can cause death or serious injury. The voltages used in the product can cause severe electric shock and/or burns and could be lethal. Extreme care is necessary at all times when working with or adjacent to the product. The installation must comply with all relevant safety legislation in the country of use.

Qualified Person
For the purpose of this manual and product, a “qualified person” is one who is familiar with the installation, construction and operation of the equipment and the hazards involved. In addition, this individual has the following qualifications:

- Is trained and authorized to energize, de-energize, clear and ground and tag circuits and equipment in accordance with established safety practices.
- Is trained in the proper care and use of protective equipment in accordance with established safety practices.
- Is trained in rendering first aid.

Reference Materials
The following related reference and installation manuals may be useful with your particular system.
- PowerTools Software User’s Guide (P/N 400503-01)
- FM-1 Speed Module Reference Manual (P/N 400506-01)
- FM-2 Indexing Module Reference Manual (P/N 400507-01)
- FM-3 Programming Module Reference Manual (P/N 400508-01)
- FM-4 Programming Module Reference Manual (P/N 400509-01)
- FM-3 and FM-4 DeviceNet Module Reference Manual (P/N 400508-03)
- Function Module Installation Manual (400506-03)
- FM-3 and FM-4 Profibus Module Reference Manual (P/N 400508-04)
The MDS Digital Servo Drives are marked with the “UL Listed” label after passing a rigorous set of design and testing criteria developed by UL (UL508C). This label indicates that UL certifies this product to be safe when installed according to the installation guidelines and used within the product specifications.

The “conditions of acceptability” required by UL are:

- The drive surrounding air ambient temperature must be 40°C (104°F) or less.
- MDS surrounding air ambient temperature can be up to 50°C (122°F) with 3% linear derating for every degree above 40°C (104°F)
- This product is suitable for use on a circuit capable of delivering not more than 10,000 RMS symmetrical amperes, 480 volts maximum.
- Motors must incorporate an overload protection device such as an overtemperature switch.

Drive Overload Protection

The drive output current overload protection is provided by the drive and is not adjustable. This overload protection is based on maximum continuous output current capacity. It will allow up to 200 percent of the drive rated current to be delivered for the amount of time determined by the following chart.

<table>
<thead>
<tr>
<th>Drive Module Model</th>
<th>Rated output current (Amps RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Continuous</td>
</tr>
<tr>
<td>MD-404</td>
<td>4</td>
</tr>
<tr>
<td>MD-407</td>
<td>7</td>
</tr>
<tr>
<td>MD-410</td>
<td>10</td>
</tr>
<tr>
<td>MD-420</td>
<td>20</td>
</tr>
<tr>
<td>MD-434</td>
<td>34</td>
</tr>
</tbody>
</table>
CE Declaration of Conformity

The MDS Drive and Power Modules are marked with the “Conformite Europeenne Mark” (CE mark) after passing a rigorous set of design and testing criteria. This label indicates that this product meets safety and noise immunity and emissions (EMC) standards when installed according to the installation guidelines and used within the product specifications.
Declaration of Conformity

<table>
<thead>
<tr>
<th>Manufacturer's Name:</th>
<th>Control Techniques/Emerson Industrial Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer's Address:</td>
<td>12005 Technology Drive, Eden Prairie, MN 55344, USA</td>
</tr>
</tbody>
</table>

Declares that the following products:

<table>
<thead>
<tr>
<th>Products Description:</th>
<th>Modular Drive System (MDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>MP-1250/MP-2500/MP-5000</td>
</tr>
<tr>
<td></td>
<td>MD-407/MD-410/MD-420/MD-434</td>
</tr>
</tbody>
</table>

Conforms to the following product specification:

- Electromagnetic Compatibility (EMC):
 - EN 55011/1998 w/Amendment A1:1999 Class A Group 1, CISPR 11/1990 Class A Group 1
 - EN 61800-3, 1996:
 - IEC 1000-4-2/1995; EN 61000-4-2, 6kV CD
 - IEC 1000-4-3/1995; EN 61000-4-3, ENV 50140/1993, 80% AM, 10V/m @ 3 m
 - IEC 1000-4-4/1995; EN 61000-4-4, 2 kV ALL LINES
 - EN 61000-4-5, 1kV L-L, 2kV L-G

Supplementary information:

The products herewith comply with the requirements of the Low Voltage Directive (LVD) 73/23/EEC and EMC Directive 89/336/EEC.

This servo drive system is intended to be used with an appropriate motor, electrical protection components, and other equipment to form a complete end product or system. MDS must only be installed by a professional assembler who is familiar with safety and electromagnetic compatibility (“EMC”) requirements. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to the information on EMC standards that the MDS complies with, as well as the product manual for installation guidelines.

January 31, 2002

John Wiegers/ Director Enigneering

European Contact:

<table>
<thead>
<tr>
<th>Sobetra Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langeveldpark Lot 10</td>
</tr>
<tr>
<td>P. Dasterleusstraat 2</td>
</tr>
<tr>
<td>1600 St. Pieters Leeuw, Belgium</td>
</tr>
</tbody>
</table>
Safety Considerations

Safety Precautions
This product is intended for professional incorporation into a complete system. If you install the product incorrectly, it may present a safety hazard. The product and system may use high voltages and currents, carries a high level of stored electrical energy, or is used to control mechanical equipment which can cause injury.

You should give close attention to the electrical installation and system design to avoid hazards either in normal operation or in the event of equipment malfunction. System design, installation, commissioning and maintenance must be carried out by personnel who have the necessary training and experience. Read and follow this safety information and the instruction manual carefully.

Enclosure
This product is intended to be mounted in an enclosure which prevents access except by trained and authorized personnel, and which prevents the ingress of contamination. This product is designed for use in an environment classified as pollution degree 2 in accordance with IEC664-1. This means that only dry, non-conducting contamination is acceptable.

Setup, Commissioning and Maintenance
It is essential that you give careful consideration to changes to drive settings. Depending on the application, a change could have an impact on safety. You must take appropriate precautions against inadvertent changes or tampering. Restoring default parameters in certain applications may cause unpredictable or hazardous operation.

Safety of Machinery
Within the European Union all machinery in which this product is used must comply with Directive 89/392/EEC, Safety of Machinery.

The product has been designed and tested to a high standard, and failures are very unlikely. However the level of integrity offered by the product’s control function – for example stop/ start, forward/reverse and maximum speed – is not sufficient for use in safety-critical applications without additional independent channels of protection. All applications where malfunction could cause injury or loss of life must be subject to a risk assessment, and further protection provided where needed.

⚠️ WARNING

General warning
Failure to follow safe installation guidelines can cause death or serious injury. The
voltages used in this unit can cause severe electric shock and/or burns, and could be lethal. Extreme care is necessary at all times when working with or adjacent to this equipment. The installation must comply with all relevant safety legislation in the country of use.

AC supply isolation device
The AC supply must be removed from the Power Module backplane using an approved isolation device or disconnect before any servicing work is performed, removing and/or installing the Power Module and/or Drive Module(s), other than adjustments to the settings or parameters specified in the manual. The drive contains capacitors which remain charged to a potentially lethal voltage after the supply has been removed. Allow at least 3 minutes after removing the supply before carrying out any work which may involve contact with electrical connections to the drive.

Grounding (Earthing, equipotential bonding)
The drive must be grounded by a conductor sufficient to carry all possible fault current in the event of a fault. The ground connections shown in the manual must be followed.

Fuses
Fuses must be provided at the input in accordance with the instructions in the manual.

Isolation of control circuits
The installer must ensure that the external control circuits are isolated from human contact by at least one layer of insulation rated for use at the applied AC supply voltage.
Table of Contents

Safety Considerations

Safety Precautions ... xi
Enclosure .. xi
Setup, Commissioning and Maintenance xi
Safety of Machinery ... xi

Introduction

Modular Drive System (MDS) .. 1

Installation

MDS Installation Overview ... 5
Basic Installation Notes ... 6
Panel Layout .. 12
MDS Overview .. 13
 - Power Module Backplane Dimensions 14
 - Power Module Assembly Dimensions 15
 - Drive Module Backplane Dimensions 16
 - Drive Module Assembly Dimensions 18
Step 1: Power Module Backplane Installation 19
Step 2: Drive Module Backplane Installation 20
Step 3: Power Module High Power Connections 23
 - AC Input Power Connection .. 24
 - Electrical AC Input Power Connections 28
Step 4: Drive Module High Power Connections 33
Step 5: Power Module Installation .. 34
Step 6: Drive Module Installation .. 35
Step 7: Power and Drive Module Low Power Connections 36
 - Logic and Digital I/O Power Sizing 36
 - Power Module I/O Connections ... 40
 - Drive Module I/O Connections ... 48
 - Motor Brake Wiring .. 50
 - Command Connector Wiring ... 52
 - Serial Communications .. 62
Step 8: Power Up Sequence ... 65
Power up Sequence ... 66
Drive and Power Module Removal .. 69
Drive Module Fuse Replacement ... 70
Modular Drive System Reference Manual

Drive Module Backplane Disassembly .. 71

Operational Overview 73
- Operational Overview ... 73
- Power Module ... 73
 - Power Module Inputs and Outputs .. 73
 - Shunt Operation ... 74
- Drive Module ... 75
 - User Interface .. 75
 - How Motion Works .. 77
 - Functional Overview ... 77
 - Pulse Mode .. 77
 - Velocity Mode .. 82
 - Torque Mode ... 85
 - Drive Modifiers .. 86
 - Current Foldback ... 91
- Brake Operation .. 92
- Analog Command Input ... 94
- Analog Outputs .. 96
- Drive Module Digital Inputs and Outputs ... 97

Options and Accessories 103
- MDS Options ... 103
 - ECI-44 External Connector Interface ... 103
 - FM-2 Indexing Module .. 105
 - FM-3 Programming Module .. 105
 - FM-4 Programming Module .. 105
 - MS-510-00 and MS-530-00 Shunt Module 106

Quick Start 109
- Offline Setup ... 109
- Online Setup ... 119

Setting Up Parameters 125
- EZ Setup/Detailed Setup Tab ... 125
 - Identification Group ... 125
 - Configuration Group (EZ Setup view only) 126
 - ConfigurationMD Group (Detailed Setup view only) 126
 - Load Group ... 127
 - Operating Mode Group .. 128
<table>
<thead>
<tr>
<th>Group</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Mode Interpretation Group</td>
<td>128</td>
</tr>
<tr>
<td>Velocity Mode Submode Group</td>
<td>130</td>
</tr>
<tr>
<td>Torque Mode Group</td>
<td>133</td>
</tr>
<tr>
<td>Positive Direction Group (Detailed Setup view only)</td>
<td>134</td>
</tr>
<tr>
<td>Inputs Tab</td>
<td>135</td>
</tr>
<tr>
<td>Outputs Tab</td>
<td>137</td>
</tr>
<tr>
<td>Position Tab (Detailed Setup view only)</td>
<td>139</td>
</tr>
<tr>
<td>Limits Group</td>
<td>139</td>
</tr>
<tr>
<td>Actual Group</td>
<td>140</td>
</tr>
<tr>
<td>Velocity Tab (Detailed Setup view only)</td>
<td>141</td>
</tr>
<tr>
<td>Limits Group</td>
<td>141</td>
</tr>
<tr>
<td>Trigger Group</td>
<td>142</td>
</tr>
<tr>
<td>Actual Group</td>
<td>142</td>
</tr>
<tr>
<td>Velocity Presets</td>
<td>143</td>
</tr>
<tr>
<td>Accel/Decel Presets</td>
<td>143</td>
</tr>
<tr>
<td>Torque Tab (Detailed Setup view only)</td>
<td>143</td>
</tr>
<tr>
<td>Actual Group</td>
<td>144</td>
</tr>
<tr>
<td>Motor Tab (Detailed Setup view only)</td>
<td>144</td>
</tr>
<tr>
<td>Configuration Group</td>
<td>145</td>
</tr>
<tr>
<td>Low Pass Filter Group</td>
<td>146</td>
</tr>
<tr>
<td>Encoder Output Group</td>
<td>146</td>
</tr>
<tr>
<td>Load Group</td>
<td>146</td>
</tr>
<tr>
<td>Tuning Group</td>
<td>147</td>
</tr>
<tr>
<td>Position Error Integral Group</td>
<td>147</td>
</tr>
<tr>
<td>Analog Tab (Detailed Setup view only)</td>
<td>148</td>
</tr>
<tr>
<td>Analog Inputs Group</td>
<td>149</td>
</tr>
<tr>
<td>Analog Outputs Group</td>
<td>149</td>
</tr>
<tr>
<td>I/O Status Tab</td>
<td>151</td>
</tr>
<tr>
<td>Inputs Group</td>
<td>151</td>
</tr>
<tr>
<td>Outputs Group</td>
<td>153</td>
</tr>
<tr>
<td>Status Tab</td>
<td>155</td>
</tr>
<tr>
<td>Position Group</td>
<td>155</td>
</tr>
<tr>
<td>Velocity Group</td>
<td>156</td>
</tr>
<tr>
<td>Torque Group</td>
<td>156</td>
</tr>
<tr>
<td>Drive Status Group</td>
<td>156</td>
</tr>
<tr>
<td>ID Group (Detailed Setup view only)</td>
<td>157</td>
</tr>
<tr>
<td>Drive Run Time Group (Detailed Setup view only)</td>
<td>158</td>
</tr>
<tr>
<td>Fault Log Group (EZ Setup view only)</td>
<td>159</td>
</tr>
<tr>
<td>Fault Log Group</td>
<td>160</td>
</tr>
<tr>
<td>Fault Counts Group</td>
<td>161</td>
</tr>
<tr>
<td>Advanced Tab</td>
<td>162</td>
</tr>
</tbody>
</table>
Introduction

Modular Drive System (MDS)

The Modular Drive System (MDS) is a 480V servo system comprised of a common Power Module and up to eight Drive Modules. The modular approach provides an optimum solution for each application. The Power Module provides the AC rectification and provides DC bus power for up to eight Drive Modules. The common power supply minimizes installation space and cost because there is only one AC Input, one Contactor, one set of AC fuses and one AC line Filter per system. Each Power and Drive Module mounts on an innovative backplane that provides the connection for the DC Bus and Logic Power, this minimizes installation time. A compact installation is possible because the backplanes mount next to each other, removing the need for space between each axis. Fuses (included) are mounted directly on each Drive Module backplane to provide individual protection for each axis.

The Drive Modules can operate as base drives providing Velocity, Torque and Pulse/Direction operations. For positioning and more advanced applications with more functionality add a FM module to that axis for control. FM modules give the MDS "snap-on" functionality for indexing (FM-2), programming (FM-3) and advanced programming (FM-4). For applications that require fieldbus, the FM-3 and FM-4 modules can be ordered with DeviceNet or Profibus options. Regardless of the control needed commissioning and programming is made easy with our FREE PowerTools FM and PowerTools Pro software.

PowerTools is a Windows® based software that makes extensive use of drag and drop editing, tabbed and hierarchical views, and on-line help to create a "Motion Made Easy" experience. Commissioning time is minimized because the tuning of the drives is completed with system parameters, Inertia mismatch, Friction and Response. The State-Space algorithm uses the system parameters and motor map (DDF files) to make a robust control system that is capable of 10:1 inertia mismatch applications out of the box. For higher mismatches, up to 50:1, a simple adjustment to the Inertia and Response parameters will provide the desired performance. PowerTools has complete diagnostics and status indicators for quick troubleshooting. System problems can be quickly identified with the status indicators and I/O on the Power and Drive Modules, along with fault logging stored in the non-volatile memory, minimizing startup time.

The MDS is able to use Control Techniques motors as well as other manufacturers motors. Setup with a Control Techniques’ motor is done by selecting the desired motor in PowerTools. Control Techniques has two lines of motors, MH and Unimotor motors to provide an optimal solution for each application.
Modular Drive System Reference Manual

Figure 1: Module Drive System Overview

Power Modules are available in three power ratings

<table>
<thead>
<tr>
<th>Power Module</th>
<th>Continuous Power</th>
<th>Peak Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1250</td>
<td>12.5 KW</td>
<td>25.0 KW</td>
</tr>
<tr>
<td>MP-2500</td>
<td>25.0 KW</td>
<td>50.0 KW</td>
</tr>
<tr>
<td>MP-5000</td>
<td>50.0 KW</td>
<td>100.0 KW</td>
</tr>
</tbody>
</table>

Drive modules are available in five current ratings.

<table>
<thead>
<tr>
<th>Drive Module</th>
<th>Power Rating (At 5 KHz)</th>
<th>Switching Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5 KHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous Current</td>
</tr>
<tr>
<td>MD-404</td>
<td>2.6 KW</td>
<td>4 A RMS</td>
</tr>
<tr>
<td>MD-407</td>
<td>4.5 KW</td>
<td>7 A RMS</td>
</tr>
<tr>
<td>MD-410</td>
<td>6.5 KW</td>
<td>10 A RMS</td>
</tr>
<tr>
<td>MD-420</td>
<td>13.0 KW</td>
<td>20 A RMS</td>
</tr>
<tr>
<td>MD-434</td>
<td>22.0 KW</td>
<td>34 A RMS</td>
</tr>
</tbody>
</table>

Note

Power ratings in the tables above are for 480 VAC line voltage. For lower input line voltages de-rate output power proportionally.
FM Modules

The MDS is designed to accept a line of function modules that further enhance its use in various applications.

- FM-2 Indexing Module enables the user to initiate up to 16 different indexes, jogging, and a single home routine.

- FM-3, FM-3DN and FM-3PB Programming Modules offer complex motion profiling. A complex motion profile consists of two or more indexes that are executed in sequence such that the final velocity of each index except the last is non-zero. Logical instructions between index statements can provide a powerful tool for altering motion profiles 'on the fly'. The FM-3 can be ordered with DeviceNet or Profibus for fieldbus applications.

- FM-4, FM-4DN and FM-4PB Programming Modules offer complex motion profiling, along with multi-tasking user programs. A complex motion profile consists of two or more indexes that are executed in sequence such that the final velocity of each index except the last is non-zero. Logical instructions between index statements can provide a powerful tool for altering motion profiles 'on the fly'. The FM-4 can be ordered with DeviceNet or Profibus for fieldbus applications.

The FM Function modules define complex motion by a configuration file that includes setups and function assignments. For the FM-3 and FM-4 modules, the configuration file also includes programs. The configuration file is created using PowerTools FM or PowerTools Pro. The FM-2 module uses PowerTools FM software, and all the FM-3 and FM-4 modules use PowerTools Pro software. Setup views have the same look and feel as dialog boxes. The assigning of input and output functions is done through assignments view in the software. PowerTools software is an easy-to-use Microsoft® Windows® based setup and diagnostics tool.
Installation

MDS Installation Overview

Installation of the MDS is completed by following a simple step-by-step process. The MDS installation begins by mounting the backplanes of the modules to a metal mounting panel (Steps 1 and 2). Next, the high power connections are made to the backplanes (Steps 3 and 4). Power and Drive Module(s) are mounted to the backplanes (Steps 5, 6, and 7). Once the modules are secured the low power connections are made. After inspection and test, the system is complete and can be powered up for commissioning (Step 8).

Step 1: Power Module Backplane Installation, page 19
Step 2: Drive Module Backplane Installation, page 20
Step 3: Power Module Backplane High Power Connections, page 23
 - AC Input Power
 - Transformer Sizing (if required)
 - External Shunt Connection (if required)
 - Line Fusing and Wire Size
Step 4: Drive Module High Power Connections, page 33
 - Motor Power Cable
Step 5: Power Module Installation, page 34
Step 6: Drive Module Installation, page 35
Step 7: Power and Drive Module Low Power Connections, page 36
 - Logic Power Sizing
 - Digital I/O and Logic Power (user supplied)
 - AC Interlock
 - Digital I/O
 - Command Signals
 - Motor Brake
 - Feedback
 - Communications
Step 8: Power Up, page 65

Before starting actual Installation it is recommended that mounting location, cable layout, environmental and electromagnetic compatibility be considered to insure a proper installation. Refer to “Basic Installation Notes” on page 6 for Control Techniques recommended installation guidelines and requirements.
Basic Installation Notes

You are required to follow all safety precautions during start-up such as providing proper equipment grounding, correctly fused power and an effective Emergency Stop circuit which can immediately remove power in the case of a malfunction. See the "Safety Considerations" section for more information.

Electromagnetic Compatibility (EMC)

Drives are designed to meet the requirements of EMC. Under extreme conditions a drive might cause or suffer from disturbances due to electromagnetic interaction with other equipment. It is the responsibility of the installer to ensure that the equipment or system into which the drive is incorporated complies with the relevant EMC legislation in the country of use.

The following instructions provide you with installation guidance designed to help you meet the requirements of the EMC Directive 89/336/EEC.

Adhering to the following guidelines will greatly improve the electromagnetic compatibility of your system, however, final responsibility for EMC compliance rests with the machine builder, and Control Techniques cannot guarantee your system will meet tested emission or immunity requirements.

If you need to meet EMC compliance requirements, EMI/RFI line filters must be used to control conducted and radiated emissions as well as improve conducted immunity. Physical location of these filters is very important in achieving these benefits. The filter output wires should be kept as short as possible (12 inches is suggested) and routed away from the filter input wires. In addition:

- Choose an enclosure made of a conductive material such as steel, aluminum or stainless steel.
- Devices mounted to the enclosure mounting plate, which depend on their mounting surfaces for grounding, must have the paint removed from their mounting surfaces and the mating area on the mounting plate to ensure a good ground. See the, "Achieving Low Impedance Connections" section for more information.
- If grounding is required for cable grommets, connectors and/or conduit fittings at locations where cables are mounted through the enclosure wall, paint must be removed from the enclosure surface at the contact points.
- AC line filter input and output wires and cables should be shielded.

Achieving Low Impedance Connections

Noise immunity can be improved and emissions reduced by making sure that all the components have a low impedance connection to the same ground point. A low impedance connection is one that conducts high frequency current with very little resistance. Impedance cannot be accurately measured with a standard ohmmeter, because an ohmmeter measures
Installation

DC resistance. For example, a 12 inch long 8 gauge round wire has a significantly higher impedance than a 12 inch long 12 gauge flat braided conductor. A short wire has less impedance than a long one.

Low impedance connections can be achieved by bringing large areas of conductive surfaces into direct contact with each other. In most cases this requires paint removal because a ground connection through bolt threads is not sufficient. However, component materials should be conductive, compatible and exhibit good atmospheric corrosion resistance to prevent loss through corrosion which will hinder the low impedance connection. Enclosure manufacturers offer corrosion resistant, unpainted mounting plates to help.

Bringing components into direct contact cannot always be achieved. In these situations a conductor must be relied upon to provide a low impedance path between components. Remember a flat braided wire has lower impedance than a round wire of a large gauge rating.

A low impedance connection should exist between the following components, but not limited to:

- Enclosure and mounting plate
- Each Power and Drive Module PE grounding tab
- EMI/RFI AC line filter chassis and mounting plate
- Other interface equipment chassis and mounting plate
- Other interface equipment chassis and electrical connectors
- Enclosure and conduit fittings or electrical connectors
- Enclosure mounting plate and earth ground
- Motor frame to conduit fittings, electrical connectors and grounded machine frame
- Encoder chassis and electrical connector

A good rule to follow when specifying conductors for high frequency applications is to use a metal strap with a length to width ratio that is less than 3:1.
Modular Drive System Reference Manual

Cable to Enclosure Shielding

Shielded motor, feedback, serial communications and external encoder cables were used for compliance testing and are necessary to meet the EMC requirements. Each cable shield was grounded at the enclosure wall by the type of grommet shown in the Figure 2.

![Figure 2: Through Wall Shield Grommet](image)

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Cable Model</th>
<th>Shielded Cable Grommet Kit Part #</th>
<th>Conduit Dimension Hole Size</th>
<th>Actual Hole Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Cable, 16 Ga</td>
<td>CMDS</td>
<td>CGS-050</td>
<td>1/2” pipe</td>
<td>7/8”</td>
</tr>
<tr>
<td>Motor Cable, 12 Ga</td>
<td>CMMS</td>
<td>CGS-050</td>
<td>1/2” pipe</td>
<td>7/8”</td>
</tr>
<tr>
<td>Motor Cable, 8 Ga</td>
<td>CMLS</td>
<td>CGS-100</td>
<td>1” pipe</td>
<td>1 3/4”</td>
</tr>
<tr>
<td>Feedback Cable</td>
<td>CFOS</td>
<td>CGS-050</td>
<td>1/2” pipe</td>
<td>7/8”</td>
</tr>
<tr>
<td>Flex Motor Cable, 16 Ga</td>
<td>CMDF</td>
<td>CGS-050</td>
<td>1/2” pipe</td>
<td>7/8”</td>
</tr>
<tr>
<td>Flex Motor Cable, 12 Ga</td>
<td>CMMF</td>
<td>CGS-075</td>
<td>3/4” pipe</td>
<td>1 1/16”</td>
</tr>
<tr>
<td>Flex Feedback Cable</td>
<td>CFCF, CFOF</td>
<td>CGS-063</td>
<td>3/4” pipe</td>
<td>1 1/16”</td>
</tr>
<tr>
<td>External Encoder</td>
<td>ENCO</td>
<td>CGS-038</td>
<td>1/2” pipe</td>
<td>7/8”</td>
</tr>
<tr>
<td>AC Power</td>
<td>user supplied</td>
<td>user supplied</td>
<td>user supplied</td>
<td>user supplied</td>
</tr>
</tbody>
</table>
Installation

AC Line Filters

The AC line filters are necessary to comply with CE emission standards. The MDS was tested with the filters presented in the table below and recommended by Control Techniques*.

* Consult factory for availability of the MLF-020-00 and MLF-035-00. The filter recommended for the MP-5000 can be used for smaller Power Modules.

Toroids

In applications using long cables additional measures to reduce EMI might be necessary, such as toroids on the motor cable. Based on Control Techniques compliance test results, the following guidelines should be used.

<table>
<thead>
<tr>
<th>Total System Current</th>
<th>Switching Frequency</th>
<th>Maximum Motor Cable Length (without toroids)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 25A</td>
<td>5 kHz</td>
<td>125 Ft</td>
</tr>
<tr>
<td></td>
<td>10 kHz</td>
<td>50 Ft</td>
</tr>
<tr>
<td>> 25A</td>
<td>5 kHz</td>
<td>75 Ft</td>
</tr>
<tr>
<td></td>
<td>10 kHz</td>
<td>75 Ft</td>
</tr>
</tbody>
</table>

Control Techniques recommends using Rasmi toroids in applications with motor cables longer than in table above.

<table>
<thead>
<tr>
<th>Motor Cable Model</th>
<th>Rasmi Toroid Part#</th>
<th>CT Model #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMDS, CMDF</td>
<td>OC/2</td>
<td>MPF-OC2-00</td>
</tr>
<tr>
<td>CMMS, CMMF</td>
<td>OC/2</td>
<td>MPF-OC2-00</td>
</tr>
<tr>
<td>CMLS</td>
<td>OC/3</td>
<td>MPF-OC3-00</td>
</tr>
</tbody>
</table>
Environmental Considerations

If the product will be subjected to atmospheric contaminants such as moisture, oils, conductive dust, chemical contaminants and metallic particles, it must be mounted in a metal NEMA type 12 enclosure.

If the ambient temperature inside the enclosure will exceed 40° C (104° F), you must consider forced air cooling.
Installation

Note

It is necessary to maintain the MDS surrounding air ambient temperature at 40°C (104°F) [50°C (122ºF) with derating of 3% per degree above 40°C].

The amount of cooling depends on the size of the enclosure, the thermal transfer of the enclosure to the ambient air and the amount of power being dissipated inside the enclosure. Consult your enclosure manufacturer for assistance with determining cooling requirements.

Wiring Notes

- To avoid problems associated with EMI (electromagnetic interference), you should route high power lines (AC input power and motor power) away from low power lines (encoder feedback, serial communications, etc.).

- If a neutral wire (not the same as Earth Ground), is supplied from the building distribution panel it should never be bonded with PE wire in the enclosure.

- You should consider future troubleshooting and repair when installing all wiring. All wiring should be either color coded and/or tagged with industrial wire tabs.

- As a general rule, the minimum cable bend radius is ten times the cable outer diameter.

- All wiring and cables, stationary and moving, must be protected from abrasion.

- Ground wires should not be shared with other equipment.

- Ensure that metal to metal contact is made between the enclosure ground lug and the metal enclosure, not simply through the mounting bolt and threads.

- All inductive coils must be suppressed with appropriate devices, such as diodes or resistor/capacitor (RC) networks.

- All motor and feedback cables must have a continuous shield from the drive to the motor (grounded at both ends).

- Included with every Power and Drive Module is a Cable Strain Relief Bracket. It is a good wiring practice to use the Strain Relief Bracket especially for heavy cables.

- If using Toroids as motor power cable filter, mount them as close to the drive as possible. Best results are obtained when the R, S, T wires are looped through the toroid 4 times.

- Do Not route the motor PE wire through the toroid.

- Keep all motor power cables at least 12 inches away from Incoming AC line on the input side of the filter.
Panel Layout

Figure 4: Recommended Layout
MDS Overview

The system must be back mounted vertically on a metal mounting panel such as a NEMA enclosure. Additional space is necessary above and below the system for wiring and cable connections. A MDS system is comprised of one Power Module and up to eight Drive Modules. The Power Module is always the left most mounted module with the Drive Modules mounted to the right. The Drive Modules are to be mounted from largest (highest current rating) next to the Power Module to smallest (lowest current rating). Each module mounts to an associated backplane which is mounted to a metal surface. For mounting dimensions refer to Pages 14 - 18.

Figure 5: Modular Drive System
Power Module Backplane Dimensions

Figure 6: Power Module Backplane Dimensions
Power Module Assembly Dimensions

Figure 7: Power Module Dimensions - MP-5000 Shown
Drive Module Backplane Dimensions

Figure 8: Drive Module Backplane Dimensions
Figure 9: Drive Module Backplane Dimensions
Drive Module Assembly Dimensions

Drive Module Model DIM "A"

<table>
<thead>
<tr>
<th>Drive Module Model</th>
<th>DIM "A"</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-404</td>
<td>2.75 (69.95)</td>
</tr>
<tr>
<td>MD-407</td>
<td>2.75 (69.95)</td>
</tr>
<tr>
<td>MD-410</td>
<td>2.75 (69.95)</td>
</tr>
<tr>
<td>MD-420</td>
<td>3.50 (88.90)</td>
</tr>
<tr>
<td>MD-434</td>
<td>5.49 (139.50)</td>
</tr>
</tbody>
</table>

Figure 10: Drive Module Dimensions - MD-420 Shown
Step 1: Power Module Backplane Installation

Mount the Power Module in the left most position using #10 panhead screws. The optional Cable Strain Relief bracket must be installed before tightening the screws holding the backplane to the metal mounting panel. To install the Optional Cable Strain Relief bracket simply slide the bracket behind the backplane, aligning the slot of the bracket with the screw holding the backplane to the metal mounting panel. Push on the bracket until it stops. Secure the Optional Cable Strain Relief bracket with a #10 panhead screw and tighten the backplane screws.

Figure 11: MP-5000 Power Module Backplane shown with Optional Cable Strain Relief Bracket Mounting
Step 2: Drive Module Backplane Installation

Note

Starting from the Power Module, the Drive Modules must be installed from largest (highest current rating) to smallest (lowest current rating), with the largest size attached to the Power Module.

Figure 12: Assembling the Drive Module Backplane to the Power Module Backplane.

MP-5000 Backplane

MD-434 Backplane
1. Loosen the DC Bus screws on the Power Module backplane.

2. Align the DC Bus bars with the DC Bus screws, the Logic connector with the Power Module board and all the tabs on the Drive Module backplane with the slots in the Power Module backplane.

3. Push the Drive Module backplane firmly into the Power Module backplane until the Bus bars are under the DC Bus screws and the backplanes snap together. The Power Module backplane board is plugged into the Drive Module backplane Logic connector and the tabs are secure in the slots. Backplane side walls of both modules are in contact with each other.

4. Torque the bus screws to 8-10 in.lbs.

5. To install the Optional Cable Strain Relief bracket, slide the bracket behind the backplane, aligning the slot with the backplane screw, push until it stops then secure with a #10 panhead screw.

Figure 13: Securing the Drive Module backplane to the Power Module backplane.
6. Secure the Drive Module backplane to enclosure mounting panel with #10 panhead screws.

WARNING

The paint must be removed from behind each PE Ground Tab to ensure proper ground connection.

7. Secure the Power and Drive Module PE ground tabs with #10 panhead screws, torque to 12 in.lb.

8. Continue adding Drive Modules, largest to smallest, by repeating step 1 through step 7.

The Power Module and Drive Module backplanes can be assembled as described above, where one backplane is assembled and secured to the enclosure at a time. Another method is to assemble all the backplanes together (Steps 1–4) and then secure them to the enclosure mounting panel.

Figure 14: Installing the Optional Cable Strain Relief Bracket
Step 3: Power Module High Power Connections

System Grounding

To insure a safe and quiet electrical installation, good system grounding is imperative. The figure below is an overview of the recommended system grounding. For more information on achieving an electrically quiet installation refer to “Basic Installation Notes” on page 6.

![System Grounding Diagram](image)

Figure 15: System Grounding Overview
WARNING

PE is not distributed through the backplanes. A separate PE connection is required for each Power and Drive Module.

Fixed Protective Earth (PE) connections are mandatory for human safety and proper operation. These connections must not be fused or interrupted by any means. Failure to follow proper PE wiring can cause death or serious injury.

AC Input Power Connection

The following examples show AC Input power connections for three phase drives. These examples are shown for reference only. Local electrical codes should be consulted before installation.

CAUTION

If the continuous power required by the system is greater than 35 KW an AC Line Reactor needs to be installed. Minimum requirements for the Line Reactor is 250 mH and 80A continuous. Control Techniques offers a Line Reactor, MLR02580-00. See the CT-MME-POWER-CD for drawings.

CAUTION

The maximum voltage applied to the Power Module AC Input terminals must not exceed 528VAC phase to phase and phase to PE ground. This can be accomplished by referencing the AC supply to earth ground.

AC Supplies NOT Requiring Transformers

If the distribution transformer is configured as shown in the figures below, the AC power supply can be connected directly to the amplifier terminals.
AC Supplies Requiring Transformers

If the distribution transformer is configured as shown in the figures below, an isolation transformer is required. For sizing of isolation transformer see “Transformer Sizing” on page 27.

If an isolation transformer is used between the power distribution point and the Power Module, the isolation transformer secondary must be grounded for safety reasons as shown in the figures below.
Figure 18: Three Phase Delta (with mid-phase GND) Distribution to a Three-Phase WYE/WYE Isolation Transformer

Figure 19: Three Phase WYE (ungrounded) Distribution to a Three-Phase Delta/WYE Isolation Transformer

Figure 20: Three Phase Delta Distribution to a Three Phase Delta/Delta Isolation Transformer
Transformer Sizing

If your application requires a transformer, use the following table for sizing the KVA rating. The values in the table are based on “worst case” power usage and can be considered a conservative recommendation. You can down-size the values only if the maximum power usage is less than the transformer continuous power rating. Other factors that may influence the required KVA rating are high transformer ambient temperatures (>40° C or >104° F) and MDS operation near the maximum speeds.

<table>
<thead>
<tr>
<th>Power Module</th>
<th>Suggested KVA Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1250</td>
<td>25</td>
</tr>
<tr>
<td>MP-2500</td>
<td>50</td>
</tr>
<tr>
<td>MP-5000</td>
<td>100</td>
</tr>
</tbody>
</table>

Transformer output voltage drop may become a limiting factor at motor speeds and loads near maximum ratings. Typically, higher KVA transformers have lower voltage drop due to lower impedance.

Line Fusing and Wire Size

You must incorporate over current protection for the AC Input power with the minimum rating shown here. Refer to the table below for recommended fuses and wiring of other equivalent fast blow fuses.

<table>
<thead>
<tr>
<th>Power Module Model</th>
<th>External AC Line Fuse</th>
<th>Recommended Minimum AC/PE Line Wire Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1250</td>
<td>KTK-R 20A, JKS 20A or JJS 20A</td>
<td>16 GA</td>
</tr>
<tr>
<td>MP-2500</td>
<td>JKS 40A or JJS 40 A</td>
<td>10 GA</td>
</tr>
<tr>
<td>MP-5000</td>
<td>JJS 70A</td>
<td>4 GA</td>
</tr>
</tbody>
</table>

WARNING

The MDS has an internal relay that is required to be wired into the control logic of the installation. The AC Interlock relay contact should be wired in series with the coil of the Mains contactor. The relay contact is rated at +24VDC at 5A. To protect the Modules the AC Interlock will open during a High AC Input or Shunt Fault Condition.
Electrical AC Input Power Connections

Figure 21: Power Module AC Power Wiring Diagram

WARNING

Do Not apply power to the backplanes before the modules are attached. The backplanes have exposed high voltage conductors.
Installation

External Shunt Electrical Installation

Shunt Wire Size

<table>
<thead>
<tr>
<th>Power Module Model</th>
<th>Recommended Minimum Shunt Wire Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1250</td>
<td>16 GA</td>
</tr>
<tr>
<td>MP-2500</td>
<td>16 GA</td>
</tr>
<tr>
<td>MP-5000</td>
<td>16 GA</td>
</tr>
</tbody>
</table>

Shunt Resistor Connection

Connect the Shunt Resistor to B+ and Shunt terminals on the Shunt connector.

Figure 22: Power Module Shunt Wiring Diagram

<table>
<thead>
<tr>
<th>Torque:</th>
<th>5 - 8 LB IN.</th>
</tr>
</thead>
</table>

CAUTION

Access to Bus- (B-) is given for measurement purposes only (i.e. oscilloscope or voltage meter). Do Not make any connections to B-.

WARNING

Shunt connections are at main voltage potential. Components connected must be rated for the voltage and selected for safety.

For proper fuse size refer to table below. Fast blow semiconductor fused rated 700 VDC or higher are recommended (such as Shawmut A70Q). If using Control Techniques’ shunt, MS-510-00 or MS-530-00, refer to Figure 24 for proper connections.

<table>
<thead>
<tr>
<th>Power Module</th>
<th>Shunt Output Fuse Size</th>
<th>External Shunt Minimum Resistance (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1250</td>
<td>4A</td>
<td>30</td>
</tr>
<tr>
<td>MP-2500</td>
<td>8A</td>
<td>30</td>
</tr>
<tr>
<td>MP-5000</td>
<td>16A</td>
<td>9</td>
</tr>
</tbody>
</table>
Figure 24: Power Module Shunt to Control Techniques’ MS-5XX-00 Wiring Diagram.

Figure 24 shows the high power connections only. For a complete wiring diagram to a MS-5XX-00 see the Option and Accessories section in this manual.
Figure 25: The MS-5XX-00 Connections

The MS-5XX-00 has integral control circuitry for protection of the shunt resistor. In order to protect the installation the shunt interlock must be placed in series with the AC Mains Contactor.
Step 4: Drive Module High Power Connections

Motor Power Cable Wiring to the Drive Module

The Motors are equipped with up to three male MS (Military Standard) connectors, one for motor power connections, one for encoder connections and one for the brake (if so equipped).

Motor power connections from the Drive Module to the motor can be made with cables which have a female MS style connector on the motor end and four individual wires and shield that connect to the motor power connector on the bottom of the Drive Module.

<table>
<thead>
<tr>
<th>Motor Model</th>
<th>Standard Cable Model</th>
<th>Flex Cable Model</th>
<th>Wire Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH or HT 3” frame</td>
<td>CMDS</td>
<td>CMDF</td>
<td>16</td>
</tr>
<tr>
<td>MH 4” and 6” frame</td>
<td>CMMS</td>
<td>CMMF</td>
<td>12</td>
</tr>
<tr>
<td>MH 8” frame</td>
<td>CMLS</td>
<td>N/A</td>
<td>8</td>
</tr>
</tbody>
</table>

Note
The motor ground wire and shields must be run all the way back to the amplifier terminal and must not be connected to any other conductor, shield of ground.

<table>
<thead>
<tr>
<th>Drive Module Motor Connections</th>
<th>Motor Power Cable Model Color Code</th>
<th>CMDS, CMMS, and CMLS</th>
<th>CMDF and CMMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>Green/Yellow</td>
<td>Green/Yellow</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Blue</td>
<td></td>
<td>Red 3</td>
</tr>
<tr>
<td>S</td>
<td>Black</td>
<td></td>
<td>Red 2</td>
</tr>
<tr>
<td>R</td>
<td>Brown</td>
<td></td>
<td>Red 1</td>
</tr>
</tbody>
</table>

Figure 26: Drive Module Motor Power Wiring Diagram
Step 5: Power Module Installation

After all the backplanes are secured with AC Input Power and Motor Power cable connections made, the Power Module must be installed into the backplane.

⚠️ WARNING

Make sure all power is off before installing any of the modules.

Orient the Power Module so the top of the module is up and the alignment bars in the Module aligns with the alignment tabs in the backplane. The sheet metal of the Power Module will be on the outside of the alignment tabs.

⚠️ CAUTION

Improper alignment of the module can cause damage to the module or the backplane.

Firmly press the Power Module into the backplane to insure good backplane connection. When the Module is completely seated to the backplane, torque the top and bottom retaining screws to 6 - 8 LB IN.

Figure 27: Power Module Assembly Diagram
Step 6: Drive Module Installation

After the Power Module is installed to its backplane the Drive Modules can be installed to their respective backplanes.

WARNING

Make sure all power is off before installing any of the modules.

Orient the Drive Module so the top of the module is up and the alignment bars in the Module aligns with the alignment tabs in the backplane. The sheet metal of the Drive Module will be on the outside of the alignment tabs.

CAUTION

Improper alignment of the module can cause damage to the module or the backplane.

Firmly press the Drive Module into the backplane to insure good backplane connection. When the Module is completely seated to the backplane, torque the top and bottom retaining screws to 6 - 8 LB IN.

Figure 28: Drive Module Assembly Diagram
Modular Drive System Reference Manual

Step 7: Power and Drive Module Low Power Connections

Logic and Digital I/O Power Sizing

The MDS requires a user supplied logic power supply, 24 VDC +/- 10%, to power the internal logic of the Power Module and Drive Modules. Use the table below to determine the current requirements of the application.

<table>
<thead>
<tr>
<th>Module</th>
<th>Model Number</th>
<th>RMS Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Module</td>
<td>MP-1250</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>MP-2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP-5000</td>
<td></td>
</tr>
<tr>
<td>Drive Module</td>
<td>MD-404</td>
<td>0.60/Module</td>
</tr>
<tr>
<td></td>
<td>MD-407</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD-410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD-420</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD-434</td>
<td>0.80/Module</td>
</tr>
<tr>
<td>FM Module</td>
<td>All</td>
<td>0.40/FM Module</td>
</tr>
<tr>
<td>Synchronization Encoder</td>
<td>*</td>
<td>0.07/Encoder</td>
</tr>
</tbody>
</table>

* Control Techniques supplies external master synchronization feedback encoders (Model# SCSLD-XXX) or user supplied synchronization feedback encoders can be used. The current required to power the synchronization feedback encoder can not exceed 250 mA @ 5 VDC/Axis.

The user supply connected to the Power Module provides power for the internal logic of the MDS. The Logic Power is carried through the backplane from the Power Module to the Drive Modules.

A user supply is also required for the Digital I/O power on the Power Module, Drive Modules, and FM Modules. The user supply for Logic Power and Digital I/O Power can be the same supply if desired. However, the input tolerances for Logic Power and Digital I/O are different and may require that the I/O and Logic Power supply be separated. Reference the following Figures for connections.
Logic and Digital I/O Power Connections

In Figures 29 and 30 the MDS is being powered by one power supply. The supply needs to be wired into the Power Module Logic Power Input and Digital I/O Input. Each Drive Module and FM module also require Digital I/O power. The Power Module’s Logic Power Input range is +24VDC +/-10%. The Digital I/O power for all the modules is +10 to 30 VDC. For applications that require Digital I/O power outside the Logic Power Input range refer to Figure 31 and 32.

Figure 29: One Power Supply for the Logic and I/O Power Wiring Diagram.
Figure 30: One Power Supply for the Logic and I/O Power Wiring Diagram.

Figure 31: Separate Power Supplies for the Logic and I/O Power Wiring Diagram
Installation

In Figures 31 and 32 the MDS Logic and I/O power are separated for applications that have Digital I/O power (+10 to 30VDC) that is out of the Logic Power Range (+24VDC +/-10%).

Figure 32: Separate Power Supplies for the Logic and I/O Power Wiring Diagram.
The function of the Power Module is to rectify the AC input and provide the DC bus for the Drive Modules. The Power Module has an integral soft-start circuit to limit the in-rush current when powering up the system. Once the DC bus is charged the Power Module passes a logic signal (System Ready) to the Drive Modules across the backplane allowing the Drive Modules to draw power from the bus. For deceleration of loads that generate more energy than the DC Bus capacitance can store, the Power Module has an integral shunt transistor that can be connected to an external shunt resistor through the shunt connector on the bottom of the backplane.

The Power Module has a built in processor providing system soft-start control, shunt control and basic self-protection and diagnostic functions such as:

- Excessive AC input voltage
• Loss of AC input voltage phase (single phase operation)
• Over temperature of the rectifier bridge and shunt transistor
• Improper shunt circuit operation or wiring error

Six diagnostic display LEDs controlled by the microprocessor are located on the Power Module front panel as well as the I/O connector with 4 digital outputs, 2 digital inputs, and AC Interlock Relay contacts. The function of these signals can be found on the following pages.

Power Module Status Indicators (LEDs)

Figure 34: Power Module Status Indicator location

Logic Power

The Logic Power status indicator (green) is illuminated when the +24VDC logic Power is correctly supplied to the Power Module. If the status indicator is not illuminated verify that the user supply is providing between +21.6 VDC and +26.4 VDC.

System Ready

The System Ready status indicator (green) is illuminated when the system power-up sequence is properly completed. See “Power up Sequence” on page 66.

The System Ready status indicator will blink if one of the AC Input Phases is lost. The system will remain functional in single phase condition. However, it’s strongly undesirable to run the system in single phase mode that can cause severe over heating of the power module components.
If AC power is on and the System Ready status indicator is not illuminated, one of the following has occurred: Shunt fault, Over-temperature or High VAC Input. These faults are described below.

Shunt Fault
The Shunt Fault status indicator (red) will be illuminated in the case of shunt resistor wiring error or a short circuit condition.

Over Temp
The Over Temp status indicator (red) will be illuminated if continuous RMS power rating of the Power Module is exceeded creating an over temperature condition. The Power Module needs to be shut down to allow for cooling before the Over Temp condition is not present. This fault may also occur if ambient temperature exceeds 40°C.

High VAC Input
The High VAC Input status indicator (red) will be illuminated if the AC input Voltage exceeds 528 VAC.

Shunt Active
The Shunt Active status indicator (green) will be illuminated when the Shunt Transistor is on. The Shunt Transistor will turn on under two conditions:
- The Bus voltage exceeds 830 VDC due to regenerative energy during motor deceleration. Shunt Transistor turn off level is 780 VDC.
- The External Shunt Control Input is active in case of emergency stop.
System Ready

The System Ready output is active (high) when the Power Module has completed the power-up sequence properly. (See Figure 38) Once this signal is active the Drive Module can be enabled. The System Ready output remains high during normal system operation and turns low in case of system fault.

If AC power is on and System Ready output is low, one of the following has occurred: ② Shunt fault, ③ Over-temperature fault or ④ High VAC Input. These faults are described below.

Shunt Fault

The Shunt Fault output ⑤ will be active (high) in the case of shunt resistor wiring error or a short circuit condition.

Figure 35: Power Module I/O Wiring Diagram

A highspeed diode (such as a 1N4000) is required for inductive loads such as a relay, solenoid or contactor.

A highspeed diode (such as a 1N4000) is required for inductive loads such as a relay, solenoid or contactor.

Over Temp
The Over Temp fault will be active (high) if continuous RMS power rating of the Power Module is exceeded creating an over temperature condition.

High VAC Input
The High VAC output will be active (high) if the AC input Voltage exceeds 528 VAC.

Drive Module Fault
The Drive Module Fault output will be active (high) if at least one of the Drive Modules is in over current or short circuit condition. In this case a 'Z' fault will be displayed on the Drive Module display indicator. The System Ready signal will not be affected by the status of this signal.

Shunt Active
The Shunt Active Output will be active (high) when the Shunt Transistor is on. The Shunt Transistor will turn on under two conditions:

- The Bus voltage exceeds 830 VDC due to regenerative energy during motor deceleration. Shunt Transistor turn off level is 780 VDC.
- The External Shunt Control Input is active in case of emergency stop.

AC Interlock
The AC Interlock relay contacts are closed if +24 VDC Logic Power is supplied to the system. This relay is intended to remove AC power from the system (contacts are open) when one of the faults below occur:

- High VAC Input or
- Shunt Fault
AC Interlock Connections

WARNING

The MDS has an internal relay that is required to be wired into the control logic of the installation. The AC Interlock relay contact should be wired in series with the coil of the Mains contactor. The relay contact is rated at +24VDC at 5A. To protect the Modules the AC Interlock will open during a High AC Input or Shunt Fault Condition.

Figure 36: AC Interlock wiring with +24VDC Mains Contactor Coil
Figure 37: AC Interlock with 120/240VAC Mains Contactor

Ext Shunt Control

The External Shunt Control Input (active high) gives the user control of the shunt transistor in case of an emergency stop. When this input is active the shunt transistor will turn on and bleed the bus down through an external shut resistor.

This Input is disabled when AC Power is supplied to the system.
Installation

Fault Reset

The Faults Reset Input (active high) allows the user to reset any of three faults without removing +24 VDC Logic Power from the system.

Figure 38: Power Module Logic Timing Diagram

Logic Power

The Logic Power is necessary for all internal logic operation of the Power and Drive Modules. The Logic Power input is +24 VDC +/- 10%. See “Logic and Digital I/O Power Connections” on page 37 for wiring diagrams.

PE (SHIELD)

The PE connection is a convenient place to connect I/O cable shield. It is the same electrical point as all other PE connections of the MDS. See “System Grounding” on page 23.
I/O

The I/O supply input is used to power the user side of the Power Module I/O. The I/O supply supports +10 to 30 VDC input. See “Logic and Digital I/O Power Connections” on page 37 for wiring diagrams.

Drive Module I/O Connections

Figure 39: Drive Module Operations and Features

The Drive Module draws power from the DC Bus and controls the current flow to the motor. Each Drive Module is configured using PowerTools FM or PowerTools PRO. The Drive Module contains a diagnostic display that provides visible feedback to the current status of the Drive Module. The Drive Module has connections for Digital I/O, Analog I/O, Encoder Feedback, Sync Encoder and the ability to connect FM modules for more functionality.
Input/Output Connector Wiring

Drive Modules are equipped with five optically isolated input lines (one is dedicated to a drive enable function) and three optically isolated output lines. They are designed to operate from a +10 to 30 VDC source. All inputs and outputs are configured as sourcing.

CAUTION

Each output is capable of providing 150mA and must be protected from over current conditions by a user supplied fuse.

WARNING

Highly inductive loads such as relays must be suppressed with a diode.

Front View

![MDS Drive Module Input/Output Wiring Diagram](image)

Figure 40: MDS Drive Module Input/Output Wiring Diagram

The I/O connector is a 10-pin removable terminal block. It is recommended that #18 to 24 AWG stranded wire be used and torque to 4 - 5 lb.-in.
Modular Drive System Reference Manual

Figure 41: MDS Drive Module I/O Connector to Command Connector Internal Connections

Note

If loads are applied to the same output signal on both Command Connector and I/O Connector, the sum total current loading must be limited to 150 mA per output signal.

Motor Brake Wiring

HT and MH motors equipped with brakes have a separate three-pin MS style connector for brake power. The brake power cable (model CBMS-XXX) has an MS style connector on the motor end and three wire leads on the Drive Module end (see Figures 42 and 43). For Unimotors equipped with brakes the brake wiring is contained in the motor power cable.

You must provide a DC power supply rated at +24 VDC with a 2 amp minimum current capacity for the brake. If you use this voltage source to power other accessories such as I/O or more than one brake, you must increase its current capability.
Figure 42: MDS Drive Module Brake Wiring Diagram using the I/O Connector
Figure 43: MDS Drive Module Brake Wiring Diagram using the Command Connector

Command Connector Wiring

All command and digital I/O signals are available using the 44-pin Command Connector (J5).

If you are interfacing your MDS to an AXIMA 2000 or 4000 multi-axis controller, simply connect the 44-pin connector of your AX4-CEN-XXX cable to the Drive Module and the 25-pin connector to the AXIMA multi-axis controller.

If you are interfacing your MDS to an AXIMA Classic or any other motion controller, you may use either the CDRO-XXX or CMDO-XXX cables or the optional External Connection Interface (ECI-44) which provides a convenient screw terminal connection strip. Connect one end of the CMDX command cable to your Drive Module and the other end to the ECI-44.
Figure 44: Command Connector (J5) Pinout and CMDO-XXX Wire Colors

For information about Command Connector pinout and CMDO-XXX cable wire colors, see the "Specifications" section.

<table>
<thead>
<tr>
<th>Function</th>
<th>Pin Numbers</th>
<th>Electrical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs and Drive Enable</td>
<td>1, 2, 3, 4, 16</td>
<td>10-30 V ("On") 0-3 V ("Off") optically isolated</td>
</tr>
<tr>
<td>Outputs</td>
<td>17, 18, 19</td>
<td>10-30 VDC sourcing 150 mA</td>
</tr>
<tr>
<td>I/O Supply</td>
<td>33, 34</td>
<td>10 - 30 VDC @ 1 Amp maximum</td>
</tr>
<tr>
<td>I/O Common</td>
<td>31, 32</td>
<td>I/O return</td>
</tr>
<tr>
<td>Pulse Inputs Differential</td>
<td>25, 26, 27, 39, 40, 41</td>
<td>5 V, 200 mV differential, 60 mV hysteresis, RS-422 compatible</td>
</tr>
</tbody>
</table>
The CMDO, CMDX and CDRO cables are all cables that plug into the Command Connector. The CMDO and CMDX cables both use the same straight connector style, same color code and carry the full complement of signals available from the Command Connector. The difference is the CMDO cable has a male connector on one end with open wires on the other while the CMDX cable has male connectors on both ends.

For information about CMDO-XXX and CMDX-XXX (18 pair cable) cable wire colors see the “Specifications” section.

Command Cables

<table>
<thead>
<tr>
<th>Function</th>
<th>Pin Numbers</th>
<th>Electrical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Inputs Single Ended</td>
<td>20, 36</td>
<td>TTL, 330 ohm pull-ups to internal 5 V, 1.5 V = low, 3.5 V = high</td>
</tr>
<tr>
<td>Encoder Supply Output +5 V</td>
<td>11</td>
<td>+5 V (200mA) output self-resetting fused internally</td>
</tr>
<tr>
<td>Encoder Common 0 V</td>
<td>12</td>
<td>0.0 V, 10 ohms away from PE</td>
</tr>
<tr>
<td>Encoder Out</td>
<td>8, 9, 23, 24, 37, 38</td>
<td>Differential line driver output (RS 422)</td>
</tr>
<tr>
<td>Analog In</td>
<td>14, 15</td>
<td>±10 VDC differential command</td>
</tr>
<tr>
<td>Diagnostic Output</td>
<td>43, 44</td>
<td>±10 VDC 10 mA maximum. Analog diagnostic output, ref. to pin 29</td>
</tr>
<tr>
<td>Diagnostic Output Common</td>
<td>29</td>
<td>0.0 V, 10 ohms away from PE</td>
</tr>
<tr>
<td>RS 485 ±</td>
<td>6, 21</td>
<td>Same signals as the Serial Connector</td>
</tr>
<tr>
<td>+15 out</td>
<td>28</td>
<td>10 mA supply, ref. pin 29 (for test purposes only.)</td>
</tr>
</tbody>
</table>

Note

Some CMDO and CMDX cables may have White/Yellow and Yellow/White wires in place of the White/Orange and Orange/White shown in the figure above (pins 6 and 21).

The CDRO cable includes only the most commonly used signals to reduce the cable outer dimension and has a connector at only one end. The 45 degree connector design used on the CDRO cable also reduces the enclosure spacing requirement below the Drive Module.

For information about the CDRO-XXX (13 pair) cable wire colors, see the "Specifications" section.
Analog Command Wiring

Figure 45: Analog Command, Differential Wiring Diagram

Figure 46: Analog Command, Single Ended Wiring Diagram
Encoder Output Signal Wiring

The encoder outputs meet RS-422 line driver specifications and can drive up to ten RS-422 signal receivers.

The default encoder output scaling is set to output the actual motor encoder resolutions. The standard MH and HT motors have 2048 lines per revolution. With PowerTools this resolution is adjustable in one line per revolution increments up to the density of the encoder in the motor.

Note: If the external controller does not have an internal terminating resistor, R1, R2, and R3 must be mounted within 6 inches of J5. A 120 ohm resistor is recommended for high frequency encoders (over 250 kHz) or cables longer than 26 feet. If encoder signals are multi-dropped, termination resistors are required only at the last drop point. Do not terminate at more than one point.

Figure 47: Command Connector (J5) Encoder Output Wiring

Figure 48: Direction Convention Diagram
Pulse Mode Wiring, Differential Inputs

Figure 49: Pulse Mode, Differential Output to Differential Input

Figure 50: Pulse Mode, Single Ended Output to Differential Input

Note: If the external controller does not have an internal terminating resistor, R1, R2 and R3 must be mounted within 6" of J5. A 120 ohm resistor is recommended for high frequency (over 250 kHz) feedback signals or cable lengths longer than 25 feet.
Modular Drive System Reference Manual

Pulse Mode Wiring, Single Ended Inputs

Figure 51: Pulse Mode, Single Ended Output to Single Ended Input (twisted pair cable)

Figure 52: Pulse Mode, Single Ended Output to Single Ended Input (non-twisted pair cable)
Installation

Figure 53: Pulse/Pulse Mode, Single Ended Output to Single Ended Input (non-twisted pair cable)

Figure 54: Master/Slave Encoder Connections

Note

Encoder outputs meet RS-422 driver specifications and can drive up to 10 RS-422 signal receivers. Each differential pulse input is an RS-422 line receivers. The default encoder
output resolution is 2048 lines per motor revolution. This resolution is adjustable in one line per revolution increments with PowerTools software. The range is between 200 and the actual motor encoder density.
Motor Feedback Wiring

Encoder feedback connections are made with the CFCS cable. This cable has an MS style connector on the motor end and a 26-pin high density “D” connector on the Drive Module end. For more information about all feedback cables see the “Specifications” section.

For A, B, C, and Z pairs, the CFCS cable uses low capacitance (~10 pf/ft) wire to get a characteristic impedance of 120 ohms. This impedance match is important to minimize signal loss and ringing.

For A, B, C, and Z pairs, the CFCS cable uses low capacitance (~10 pf/ft) wire to get a characteristic impedance of 120 ohms. This impedance match is important to minimize signal loss and ringing.

![Motor Feedback Connector Pinout](image)

The MDS drive can accept differential or single ended commutation signals: U, V, and W. If the commutation signals are single-ended connect the appropriate signals to U, V, and W. The compliment signals U, V and W do not need to be grounded for operation. The signals are pulled to ground internally.
Serial Communications

Serial communications with the MDS is provided through the female DB-9 connector located on the front of the Drive Module. The serial interface is either three wire non-isolated RS-232C or two wire non-isolated RS-485. RS-485 is also available through the 44-pin Command Connector.

⚠️ CAUTION ⚠️

The MDS serial port on the drive contains connection for RS-232 and RS-485 in the same 9-pin connector. With this dual communications support a 9-pin to 9-pin straight through cable can not be used. The Control Techniques’ TIA-XXX cable is recommended.

⚠️ CAUTION ⚠️

When connecting the serial port of your PC to the serial port of the Drive Module, verify that your PC’s ground is the same as the MDS PE ground. Failure to do so can result in damage to your PC and/or your Drive Module.

Note

Communication errors can usually be avoided by powering the computer or host device off of a convenience outlet that is mounted in the enclosure and whose neutral and ground are wired to the same single ended point ground that the MDSs and controllers are using.

This is sometimes beneficial even with battery powered computers.

Modbus Communications

The Drive Module’s serial communication protocol is Modbus RTU slave with a 32 bit data extension. The Modbus protocol is available on most operator interface panels and PLC’s.

<table>
<thead>
<tr>
<th>Serial Communications Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max baud rate</td>
<td>19.2k</td>
</tr>
<tr>
<td>Start bit</td>
<td>1</td>
</tr>
<tr>
<td>Stop bit</td>
<td>2</td>
</tr>
<tr>
<td>Parity</td>
<td>none</td>
</tr>
<tr>
<td>Data</td>
<td>8</td>
</tr>
</tbody>
</table>

Motion Interface panels are supplied with a Modbus master communications driver.
Multi-Drop Communications

The RS-485 option (pins 4 and 9) is provided for multi-drop configurations of up to 32 Drive Modules. A multi-drop serial cable, is available, which allows you to easily connect two or more MDS Drive Modules.

Figure 56: MDS Multi-Drop Wiring Diagram, RS-232 to RS-485 communications

Note:
The terminating resistor packs, Term-H and Term-T, should be installed on the first (Term-H) and last (Term-T) MDS Drive Modules in the string if the total cable length is over 50 feet.

*If the user device (PC, Operator Interface, PLC, etc) is communicating RS-485, the Term-H or equivalent terminating resistor (120 Ohm) must be placed at the user device and not on the first MDS module.
Figure 57: Multi-Drop Wiring Pinout with RS-232 Communications to PC

Figure 58: Multi-Drop Wiring Pinout with RS-485 Communications to User Device
Step 8: Power Up Sequence

Verify that all Power and Drive Modules are installed and secured to their respective backplanes.

⚠️ WARNING ⚠️

Powering up and running the system without all Modules installed to their backplanes is NOT SAFE and could result in serious injury or death.

Verify proper wiring of Incoming VAC and Motor Power. Verify that the AC Interlock Relay is correctly wired to protect the system. Verify that the Logic Power supply and/or I/O Power supply are wired properly. After installation use the following flow chart to verify the correct Power Up sequence.
Power up Sequence

Figure 59: Power Up Sequence Flow Chart - Part 1
From previous page

Power Module Faults?

No

Drive module(s) do not function properly and need to be replaced

Yes

Over Temp

Power Module exceeded it's max temperature and needs cool down time.

High VAC Input

AC Input line voltage exceeded 528 VAC

Shunt Fault

Shunt transistor failed, due to short in wiring or module

If none of these conditions have been found it means the Power Module does not function properly

Figure 60: Power Up Sequence Flow Chart - Part 2
The MDS is able to handle short drops (glitch) on the AC Input Power without interruption to system operation. If the DC Bus voltage drop is greater than 250 VDC the System Ready Signal will go Low (not Active). If AC Input Power is applied before the DC Bus voltage drops to 60VDC the Power Module will re-enter Soft Start and the Ready Signal will go High (Active) when the Soft Start is complete. If the DC Bus voltage drops below 60VDC the system will need to be reset for the Modules to power-up.

Figure 61: AC Glitch Handling Diagram

Motor Mounting

Motors should be mounted firmly to a metal mounting surface to ensure maximum heat transfer for maximum power output. The mounting surface should be bonded to the single point ground.

For motor dimensions, weights and mounting specifications, see the "Specifications" section.
Drive and Power Module Removal

WARNING

DO NOT remove Power or Drive Modules until at least 3 minutes after AC Power has been removed from the system.

1. Unplug all I/O and/or cable connections to the Power and Drive Modules.
2. Loosen the Retaining Screws of the module being removed.
3. Grasp the top and bottom Integrated Removal Tab of the module.
4. Pull the module from the backplane.

![Power and Drive Module Removal Diagram](image)

Figure 62: Power and Drive Module Removal Diagram
Drive Module Fuse Replacement

The Drive Module backplane is equipped with two over current protection fuses with the ratings shown here. Control Techniques recommends fuse type: SHAWMUT® A70QS.

<table>
<thead>
<tr>
<th>Drive Module</th>
<th>Fuse Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-404</td>
<td>10 A</td>
</tr>
<tr>
<td>MD-407</td>
<td>16 A</td>
</tr>
<tr>
<td>MD-410</td>
<td>20 A</td>
</tr>
<tr>
<td>MD-420</td>
<td>32 A</td>
</tr>
<tr>
<td>MD-434</td>
<td>50 A</td>
</tr>
</tbody>
</table>

Figure 63: Fuse Location in a Drive Module Backplane - MP-2500/MD-434 Shown
Drive Module Backplane Disassembly

These instructions are to remove a Drive Module backplane from another Module backplane. Shown in the figure below is a Power and Drive Module Backplane assembly.

Figure 64: Drive Module Backplane Disassembly Diagram

WARNING

DO NOT remove Power or Drive Modules until at least 3 minutes after AC Power has been remove from the system.
1. Remove the Drive Module and the Power Module from their backplanes. For details see “Drive and Power Module Removal” on page 69.

2. Remove the PE ground tab screw and if applicable the Optional Cable Strain Relief screw of the backplane being removed.

3. Remove the screws that secure the backplane to the metal mounting panel. If applicable the Optional Cable Strain Relief can be removed now.

4. Loosen the Bus screws.

5. Insert a flat tipped screwdriver into the slot between backplanes as shown in Fig 64. Push on the screwdriver with enough force to depress the snap tab, at the same time carefully pull the backplane away from the other backplane. The backplanes only need to be separated far enough so the snap tab is unlocked from the other backplane.

6. Insert the screwdriver in the slot on the other end of the backplane and depress the snap tab, carefully pull the backplane away, unplugging the Logic connector from the other backplane.
Operational Overview

The Modular Drive System consists of one Power Module and up to eight Drive Modules connected to the Power Module. The Power Module converts the AC Input Power into a DC Bus that is passed across the backplane. The Power Module contains Soft start Circuitry, Shunt Transistor and Digital I/O. The Digital I/O of the Power Module is pre-defined and there is no software configuration for it.

The Drive Modules are powered by the DC Bus created by the Power Module. The Drive Module contains Digital I/O, Analog I/O, Encoder Signals, Communication Signals, Pulse Direction Inputs and Status display. The Status display is for the individual drive axis. The Drive Module I/O can be configured using PowerTools FM software. PowerTools FM is a Windows® based software used for setup and diagnostic tool.

Power Module

Power Module Inputs and Outputs

<table>
<thead>
<tr>
<th>Logic Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Logic Power status indicator (green) is illuminated when the +24VDC, +/- 10% Logic Power is correctly supplied to the Power Module.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>The System Ready status indicator (green) is illuminated when the system power-up sequence is properly completed. The System Ready status indicator will blink if one of the AC Input Phases is lost. The system will remain functional in single phase condition. If AC power is on and the System Ready status indicator is not illuminated, one of the following has occurred: Shunt fault, Over-temperature or High VAC Input. These faults are described below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shunt Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Shunt Fault status indicator (red) will be illuminated in the case of shunt resistor wiring error or a short circuit condition.</td>
</tr>
</tbody>
</table>
Modular Drive System Reference Manual

Over Temp

The Over Temp status indicator (red) will be illuminated if continuous RMS power rating or the Power Module is exceeded creating an over temperature condition.

High VAC Input

The High VAC Input status indicator (red) will be illuminated if the AC input Voltage exceeds 528 VAC.

Shunt Active

The Shunt Active status indicator (green) will be illuminated when the Shunt Transistor is on. The Shunt Transistor will turn on under two conditions:

- The Bus voltage exceeds 830 VDC due to regenerative energy during motor deceleration. Shunt Transistor turn off level is 780 VDC.
- The External Shunt Control Input is active in case of emergency stop.

Shunt Operation

The MDS Power Module has a internal shunt transistor with 15A capacity that can be connected to an external shunt resistor to dissipate regenerative energy generated during deceleration of a load.

The MDS Power and Drive Modules rely on the bus capacitors to absorb normal levels of regenerative energy.

<table>
<thead>
<tr>
<th>Power Module Model</th>
<th>External Shunt Minimum Resistance (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1250</td>
<td>30</td>
</tr>
<tr>
<td>MP-2500</td>
<td>30</td>
</tr>
<tr>
<td>MP-5000</td>
<td>9</td>
</tr>
</tbody>
</table>

External Shunt Operation

The connection for an external shunt resistor is between Bus+ (B+) and Shunt Out located on the Power Module.
Operational Overview

WARNING
Access to Bus- (B-) is given for measurement purposes only i.e. oscilloscope or voltmeter. Do Not make any connections to B-.

You should mount the external shunt resistor so that the heat it generates does not affect the drive.

Drive Module

User Interface

The MDS system is setup using PowerTools FM software.

PowerTools FM Software

PowerTools FM software is an easy to use Windows-based setup and diagnostics tool. PowerTools FM software provides you with the ability to create, edit and maintain your Drive Module’s setup. You can download or upload your setup data to or from a Drive Module and save it to a file on your PC or print it for review or permanent storage.

PowerTools FM software provides two setup views of the Drive Module, EZ Setup and Detailed Setup. EZ Setup view is intended to be used by most PowerTools FM software users and provides access to all commonly used drive parameters. Detailed Setup view is available for more advanced drive users who need access to all setup options and diagnostic information.
Figure 65: PowerTools FM Window, EZ Setup View

Figure 66: PowerTools FM Window, Detailed Setup View
Operational Overview

How Motion Works

Below is a list of details related to motion in a Drive Module.

- The Stop input function overrides motion in all operating modes including Pulse and Torque mode. It shifts the mode to Velocity mode and decelerates the axis according to the Stop deceleration ramp.
- The Travel Limits work in all operating modes including; Pulse, Velocity and Torque modes.
- When a Travel Limit has been activated in a particular direction, uninhibited motion is allowed in the opposite direction.
- The Positive Direction parameter affects all motion by specifying which direction the motor shaft will rotate (CW or CCW) when the command position is increasing.
- When changing modes with Torque Mode Enable input function, no ramping occurs between the two different commands.
- When using Summation mode, the properties of both summed modes are honored.

Functional Overview

The Drive Module is a digital servo drive that provides three basic modes of operation: Pulse, Velocity and Torque. The Operating Mode selection defines the basic operation of the Drive Module.

External control capability is provided through the use of input and output functions. On the power module these functions are pre-defined and on the Drive Module these functions may be assigned to any input or output line which may be controlled by external devices, such as a PLC or multi-axis controller, to affect the Drive Module operation.

Drive parameters can be modified using PowerTools FM software or an FM-P. All drive parameters have a pre-assigned Modbus address which allows you to access them using a Modbus interface.

Pulse Mode

In Pulse mode, the Drive Module will receive pulses which are used to control the position and velocity of the motor.

There are three pulse interpretations associated with Pulse mode: Pulse/Pulse, Pulse/Direction and Pulse/Quadrature. These selections determine how the input pulses are interpreted by the Drive Module.

Note

High Performance Gains check box in PowerTools FM software is typically enabled when Pulse mode is used (the default is enabled).
Pulse Source Selection

The Drive Module provides two types of pulse input circuits which allows you to choose the appropriate input type to match the device generating the position pulses. The selection is done by wiring to the desired input pins of the Command Connector and setting the Pulse Source selection in the Setup tab. The Differential setting (default) is perfect for most encoders or upstream Drive Modules. The Single Ended setting is a good match for any open collector driver that requires an external pull up resistor making it ideal for most stepper controllers, PLC stepper cards and PC computer parallel printer ports.

The two hardware input circuits are included in the Drive Module and are accessible through the Drive Module command connector. The differential input circuit is RS-422 compatible making it inherently noise immune while being able to accept pulse rates of up to 2 Mhz per channel. The single ended inputs use high noise immunity circuitry and have internal pull-up resistors to the Drive Module’s 5 Volt logic supply so external pull-ups and biasing circuitry is not required. When proper installation techniques are followed as shown below, the differential input setup will provide a more robust and noise immune system than a single ended input setup.

Differential input is recommended under any of the following conditions:

- Pulse width < 2 µs
- Pulse frequency > 250 kHz
- Pulse command cable length > 25 feet
- Noisy electrical environments

Differential input circuit specifications:

- Input frequency maximum: 2 Mhz
- Input device: AM26C32
- Input impedance: 12 Kohms each input
- Maximum voltage applied to input pins (A, A/) or (B, B/):
 - Single Ended (referenced to 0V drive logic): +/-10V
 - Differential (referenced to mating differential input): +/-10V
- Maximum common mode voltage: +/-7 V
- Minimum differential voltage required: 200 mV
- Input voltage hysteresis: 60 mV

<table>
<thead>
<tr>
<th>ECI-44 Terminal</th>
<th>Command Connector Pin #</th>
<th>Pulse-Direction Signal</th>
<th>Pulse-Pulse Signal</th>
<th>Pulse Quadrature Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync Enc In “A”</td>
<td>27</td>
<td>Pulse</td>
<td>Pulse -</td>
<td>A</td>
</tr>
<tr>
<td>Sync Enc In “A/”</td>
<td>41</td>
<td>Pulse/</td>
<td>Pulse +/-</td>
<td>A/</td>
</tr>
<tr>
<td>Sync Enc In “B”</td>
<td>26</td>
<td>Direction</td>
<td>Pulse -</td>
<td>B</td>
</tr>
<tr>
<td>Sync Enc In “B/”</td>
<td>40</td>
<td>Direction/</td>
<td>Pulse +/-</td>
<td>B/</td>
</tr>
</tbody>
</table>
Operational Overview

Single ended input circuit specifications:

Single ended input specifications:
- 1 MHz maximum input frequency
- Internal 330 ohm pull-up to 5 Volt (non-isolated)
- 1.5 Volt low level
- 3.5 Volt high level

Output driver requirements:
- 15 mA sinking (open collector)
- 5 Volt capacity

Signal common connected to Drive Logic 0V (Sync Encoder Common 0V)

<table>
<thead>
<tr>
<th>ECI-44 terminal</th>
<th>Command Connector Pin #</th>
<th>Pulse-Direction Signal</th>
<th>Pulse-Pulse Signal</th>
<th>Pulse Quadrature Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC2</td>
<td>20</td>
<td>Pulse /</td>
<td>Pulse CW /</td>
<td>A</td>
</tr>
<tr>
<td>NC1</td>
<td>36</td>
<td>Direction</td>
<td>Pulse CCW /</td>
<td>B</td>
</tr>
</tbody>
</table>

Note

Actual motor rotation direction will depend on pulse ratio polarity and setting of the Positive Direction bit.

Pulse/Direction Interpretation

In Pulse/Direction interpretation, pulses are received on the A channel and the direction is received on the B channel. If the B is high, pulses received on the A are interpreted as positive changes to the **Pulse Position Input**. If the B is low, pulses received on the A are interpreted as negative changes to the **Pulse Position Input**.
Pulse/Quadrature Interpretation

In Pulse/Quadrature interpretation, a full quadrature encoder signal is used as the command. When B leads A encoder counts are received they are interpreted as positive changes to the Pulse Position Input. When A leads B encoder counts are received they are interpreted as negative changes to the Pulse Position Input. All edges of A and B are counted, therefore one revolution of a 2048 line encoder will produce an 8192 count change on the Pulse Position Input.
Operational Overview

Pulse/Pulse Interpretation

In Pulse/Pulse interpretation, pulses received on the A channel are interpreted as positive changes to the Pulse Position Input. Pulses received on the B channel are interpreted as negative changes to the Pulse Position Input.

Figure 70: Pulse/Pulse Signals, Differential Inputs

Pulse Mode Parameters

The Pulse Position Input parameter shows the total pulse count received by the Drive Module since the last power-up.

The Pulse Position Input, Position Command, Position Feedback Encoder and Position Feedback are initialized to zero on power-up. Only Position Feedback Encoder can be pre-loaded serially with a value after power-up.

The Pulse Mode Ratio parameter includes a numerator which represents motor revolutions, and a denominator which represents master pulses. The Pulse Ratio Revolutions is allowed to be negative which reverses all Pulse mode motion.

The Pulse Position Input is multiplied by the Pulse Mode Ratio to produce the Position Command.

Following Error/Following Error Limit

The Following Error is the algebraic difference between the Position Command and the Position Feedback. It is positive when the Position Command is greater than the Position Feedback. All accumulated Following Error will be cleared when the Drive Module is disabled.

The Following Error Limit is functional in Pulse mode only. A Following Error Limit can be set using PowerTools FM or a FM-P. This limit is in motor revolutions and has a range of .001 to 10.000 revolutions. The Following Error Limit can be enabled or disabled.

Pulse Mode Following Error

In Pulse Mode, the range of the Following Error is ±2863.3 revolutions. If the Following Error Limit is not enabled and the Following Error exceeds 2863.3 revolutions, the displayed value is limited to this maximum value and will not rollover.
If the Following Error Limit Enable is enabled, the absolute value of the Following Error will be compared to the Following Error Limit. If the limit is exceeded, a fault will be generated. If the Following Error Limit Enable is disabled, the Following Error Limit is not used.

Velocity Mode Following Error

In Velocity mode, the maximum Following Error possible varies based on the gain and torque limit settings. When the Actual Torque Command reaches the maximum possible level, the following error will stop increasing and any additional position error will be dropped. In Velocity mode, when the following error exceeds the Following Error Limit parameter there is no action.

Encoder Feedback and Position Feedback

Encoder Feedback (Position Feedback Encoder) and Position Feedback are two separate parameters which indicate the same physical motor position. Encoder Feedback is the position change since power up in motor encoder counts and Position Feedback is the total position change since power up in motor revolutions. The Position Direction parameter setting will change which direction the motor rotates when the position feedback and position command are counting up. In the default setting the position counts up when the motor shaft rotates clockwise (when viewed from the shaft end).

The Encoder Feedback (Position Feedback Encoder) parameter can be pre-loaded serially by setting the Position Feedback Encoder Modbus parameter.

Velocity Mode

Three submodes are associated with Velocity mode: Analog, Presets and Summation.

Analog Submode

The Analog Input receives an analog voltage which is converted to the Velocity Command Analog parameter using the Full Scale Velocity, Analog Input Full Scale, and Analog Input Zero Offset parameters. The equation for this conversion is:

\[VCA = \frac{((AI - AZO) \cdot FSV)}{AFS} \]

Where:

- \(VCA \) = Velocity Command Analog (RPM)
- \(AI \) = Analog Input (volts)
- \(AZO \) = Analog Input Zero Offset (volts)
- \(FSV \) = Full Scale Velocity (volts)
- \(AFS \) = Analog Input Full Scale (volts)
The Velocity Command is always equal to the Velocity Command Analog in Analog Velocity mode. The Velocity Command is the command received by the velocity closed loop control.

Analog Accel/Decel Limit

This feature in the Analog submode allows you to limit the accel and decel rate when using the analog input for velocity control. This makes it very simple to use the drive in high performance, variable speed, start-stop applications such as Clutch-Brake replacements without requiring a sophisticated controller to control the acceleration ramps. In applications which do not require the drive to limit the ramps such as when using an external position controller, the parameter can be set to “0” (its default value). If the Analog Accel/Decel Limit parameter value is changed during a ramp, the new ramp limit is imposed within the next servo loop update.

The Analog Accel/Decel Limit parameter is accessed on the Velocity tab. Its range is 0.0 to 32700.0 ms/kRPM.

Presets Submode

Presets submode provides up to eight digital Velocity Presets and associated Accel/Decel Presets. At any time only one Velocity Preset can be selected. They are selected using the Velocity Preset Line #1, Line #2 and Line #3 input functions (see table below).

<table>
<thead>
<tr>
<th>Velocity Preset Line #3</th>
<th>Velocity Preset Line #2</th>
<th>Velocity Preset Line #1</th>
<th>Selected Velocity and Accel/Decel Preset #</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

* (0) = Inactive input function, (1) = Active input function

When one of the Velocity Presets is selected, the Target Velocity is set equal to the Velocity Preset value and the accel/decel ramp rate is set to the Accel/Decel value associated with that velocity.

If the Velocity Command Preset is not equal to the Target Velocity, an acceleration (or deceleration) ramp is in progress. In this state, the Velocity Command Preset will be increased (or decreased) based upon the acceleration (or deceleration) ramp rate of the selected velocity preset. During the acceleration/deceleration ramp, the At Velocity output function is inactive.

If the Velocity Command Preset is equal to the Target Velocity, all ramping is complete, the Velocity Command Preset is constant and the At Velocity output function is active.
The Velocity Command is always equal to the Velocity Command Preset in Presets submode.

Figure 71: Velocity vs. Time Diagram using Preset Velocities

Summation Submode

In Summation submode the Velocity Command is the result of the sum of the Velocity Command Analog and the Velocity Command Preset values:

\[\text{VC} = \text{AC} + \text{PC} \]

Where:

- \(\text{VC} \) = Velocity Command
- \(\text{AC} \) = Velocity Command Analog
- \(\text{PC} \) = Velocity Command Preset

Example 1:

Use of Velocity Presets in a phase advance/retard application. Velocity Preset #0 is set to 0 RPM, Velocity Preset #1 is set to +5 RPM, and Velocity Preset #2 is set to -5 RPM. The Analog Input is the command source for a web application where a phase adjustment may be useful. Without interrupting the operation, you may select either Velocity Preset #1 or #2 to speed up or slow down the motor thereby advancing or retarding the phase between the motor and the web material.
Example 2:
Use the Velocity Command Analog as a trim adjustment to the digital Velocity Presets. Velocity Preset #2 is selected with Analog Input at 0, so the Velocity Command Preset and Velocity Command are equal (set to match a conveyor speed). You can use the Analog Input (Velocity Command Analog) as a fine adjust for the Velocity Command to exactly match the conveyor speed.

Figure 72: Summation Mode Block Diagram

Figure 73: Velocity vs. Time Diagram, Summation Mode

Torque Mode
In Torque mode both the position and velocity loops are disabled and only the torque loop is enabled.

Note
Velocity related faults and velocity related input and output functions are still enabled (including Stop and Travel Limits).
In Torque mode the Drive Module receives an Analog Input which is scaled to the Analog Torque Command by the Full Scale Torque, Analog Input Full Scale, and Analog Input Zero Offset parameters. The equation is:

\[
TC = \frac{((AI - AZO) FST)}{AFS}
\]

Where:
- \(TC\) = Torque Command
- \(AI\) = Analog Input (volts)
- \(AZO\) = Analog Input Zero Offset (volts)
- \(FST\) = Full Scale Torque (%)
- \(AFS\) = Analog Full Scale (volts)

Drive Modifiers

This section describes functions that can modify the operation of the drive.

Stop

The Stop input function, when activated, will cause motion to stop regardless of motor direction or the operating mode. The Stop Deceleration Ramp defines the rate of velocity change to zero speed.

Activating the Stop input function causes the drive to change to Velocity mode. Therefore, if you are operating in Torque mode, the Drive Module must be tuned to the load to prevent instability when activating the Stop input function.

For example, if an application is operating in Torque mode at 1000 RPM, and the Stop input function is activated with a Stop Deceleration Ramp of 500 ms/kRPM, the motor will decelerate to a stop in 500 ms.

WARNING

When the Stop input function is deactivated, the previous operating mode is restored within 400 µs and the Drive Module and motor will respond immediately with no ramping unless ramping is part of the selected mode.

+/− Travel Limits

The + and - Travel Limit input functions will stop motion in the direction indicated by the input function using the Travel Limit Deceleration rate. This feature is active in all modes. When an axis is stopped by a Travel Limit function, it will maintain position until it receives a command that moves it in the opposite direction of the active Travel Limit.
For example, the + Travel Limit will stop motion only if the motor is moving + but allows - motion to move off the limit switch. Conversely, the - Travel Limit will stop motion only if the motor is moving - but allows + motion to move off the limit switch.

If both input functions are active at the same time, no motion in either direction will be possible until at least one of the inputs is released.

When either + or - Travel Limit input function is activated, a fault will be logged into the Fault Log, and the Drive Module will display an “L” on the LED diagnostics display on the front of the Drive Module. Once the axis is driven off the limit switch, the fault will be cleared and the “L” will disappear.

If both Travel Limit input functions are activated simultaneously, the Drive Module will respond as if the Stop input function has been activated and will use the Stop Deceleration ramp.

Note

The function of the Travel Limits will be effected by the installation of an Function Module (FM) to the MDS Series. Please refer to the particular FM’s reference manual for complete description.

Travel Limit Application Notes

Torque Mode

If you are operating in Torque mode, the Drive Module must be tuned to the load to prevent instability when activating the Travel Limit input functions.

Host Controller Travel Limits

If the host controller deaccelerates the Drive Module faster than the Travel Limit Deceleration ramp, the Drive Module allows the controller to maintain full control of the axis during the decceleration. This results in no following error build up in the controller and easier recovery.

Vertical Loads in Velocity Mode

In applications with horizontal, counterbalanced or un-counterbalanced vertical loads, the load will held in position when motion is stopped due to a + or - Travel Limit. The position will be held until the controller commands motion in the opposite direction of the activated Travel Limit.

Vertical Loads in Torque Mode

In applications with horizontal or counterbalanced vertical loads, the load will held in position when motion is stopped due to a + or - Travel Limit. The position will be held until the controller commands motion in the opposite direction of the activated Travel Limit.
When an axis is stopped by the upper Travel Limit with a vertical load, the controller must maintain a torque command at a minimum level to hold the load or the load may drop.

In applications with un-counterbalanced vertical loads, you must be careful not to set the controller’s torque command to zero when the upper Travel limit is activated. Setting the controller’s analog torque command to zero in this situation will command the axis to move off the limit switch causing the load to drop.

If your controller removes the torque command (zeroes the analog command output) when a Travel Limit is activated, you have a number of choices to prevent the load from dropping. All of which require some external logic to determine when the controller can actually take control again.

• Activate the opposite Travel Limit input function, then release it when the controller is operational again.
• Activate the Stop input function, then release it when the controller is operational again.
• Apply the axis brake, then release it when the controller is operational again.

Pulse Mode

In applications with horizontal, counterbalanced or un-counterbalanced vertical loads, the load will be held in position when motion is stopped due to a + or - Travel Limit. The position will be held until the controller commands motion in the opposite direction of the activated Travel Limit.

When the travel limits are activated, the Drive Module will decelerate at the Travel Limit Deceleration Ramp and will continue to store all the command pulses received up to 2^{32} counts. The stored pulses need to be cleared out before the axis will move off the Travel Limit. This can be done if the controller generates command pulses in the direction opposite the activated Travel limit. The stored command pulses can also be cleared by activating both Travel Limit input functions at the same time, activating the Stop input function or disabling the Drive Module for as little as 5 msec (plus any debounce time).

Torque Limiting

The Torque Command is calculated as shown previously, but its value is limited by the Torque Limit parameter and the current foldback function (see "Torque Limit" and "Current Foldback"). The result of this limiting function is Torque Command Actual. This is the command that drives the Power Stage to generate current in the motor. The Torque Limit Active output function is active whenever the Torque Command Actual is less than from the Torque Command. This will be true when motion is stopped due to a Travel Limit input function.
Operational Overview

Torque Limit Function

The Torque Limit Enable input function allows an external controller to limit the Actual Torque Command to a lower value. The Torque Limit parameter is active only when the Torque Limit Enable input function is active.

\[T_{TL} = \min(P_{MT}, P_{DT}, R_{FL}, S_{FL}, P_{TL}) \]

Where:

- \(T_{TL} \) = Total Torque Limit
- \(P_{MT} \) = Peak motor torque
- \(P_{DT} \) = Peak Drive Module torque
- \(R_{FL} \) = RMS foldback limit (80 percent of continuous system torque rating)
- \(S_{FL} \) = Stall foldback limit (80 percent of Drive Module stall current rating)
- \(P_{TL} \) = Programmable Torque Limit

Note

The Torque Limit Enable input must be active to use \(P_{TL} \).

If the application requires that the Torque Limit be enabled at all times, the Torque Limit Enable input function may be setup to be Always Active to avoid the use of an input line.

Velocity Limiting

The Drive Module commanded velocity is limited to 112.5% of the motor’s maximum operating speed. This limiting has nothing to do with the Line Voltage setting. Depending on AC supply voltage, it may or may not be possible to get to motor maximum operating speed.

Note

See the "Drive Module/Motor Specifications" section for maximum motor speeds.

Example 1:

If the Motor Type is an HT-320, the maximum motor speed of the HT-320 is 4000 RPM. If the Line Voltage parameter is set to 230 VAC and the Velocity Limit is equal to 112.5 percent of 4000 RPM or 4500 RPM.

Overspeed Velocity Parameter

Motor speed is continuously monitored against the Overspeed Velocity parameter whether the Drive Module is enabled or not and when the motor speed exceeds the limit, or Overspeed Velocity Limit, a fault is issued. The default value for Overspeed Velocity Limit is 13000 RPM.
The Drive Module has an internal overspeed velocity limit. This limit is the maximum of the Overspeed Velocity parameter and 150% of the motor maximum operating speed. For example, an HT-320 with 4000 RPM maximum speed the internal limit is 6000 RPM.

The Overspeed fault will be activated when either one of these two conditions are met:
1. When the actual motor speed exceeds the Overspeed Velocity Limit parameter.
2. If the combination of command pulse frequency and Pulse Ratio can generate a motor command speed in excess of the fixed limit of 13000 RPM. In Pulse mode operation and any Summation mode which uses Pulse mode, the input pulse command frequency is monitored and this calculation is made. For example: with a Pulse Ratio of 10 pulses per motor revolution, the first pulse received will cause an Overspeed fault even before there is any motor motion.

In Motion Velocity

The In Motion Velocity parameter defaults to a value of 10 RPM. If the motor Velocity Feedback is above the In Motion Velocity value, the In + Motion or In - Motion output function is active. When the motor velocity falls below one half of the In Motion Velocity, the In + Motion or In - Motion output function is inactive.

The maximum value for In Motion Velocity is 100 RPM and is intended to be used to indicate “in motion” not “at speed”.

Note

The In Motion Velocity detect is monitored every 400 µs so machine jitter and torque ripple could cause flicker in this signal if the commanded velocity is near the In Motion Velocity parameter value.

Motor Direction Polarity

The direction that the motor turns with a positive command can be changed with the Positive Direction parameter. This can be accessed with PowerTools FM in the EZ Setup tab or Detailed Setup tab. The positive direction by default causes the motor to turn CW as viewed looking at the shaft.

Note

CW and CCW rotation is determined by viewing the motor from the shaft end.
Figure 74: Clockwise Motor Rotation

Positive direction is defined as the command which causes the internal position counter to count "Up". They are:

- A positive analog velocity or torque command (i.e., a higher voltage on the (+) differential input than on the (-) input).
- A positive direction (+) pulse command.
- A positive preset velocity or torque command.

Current Foldback

Current foldback is used to protect the motor and Drive Module from overload. There are two levels of current foldback: RMS Foldback and Stall Foldback.

RMS and Stall Foldback are displayed on the diagnostic display as a "C" and "c" respectively.

RMS Foldback

RMS foldback protects the motor from overheating. The RMS Foldback parameter models the thermal heating and cooling of the Drive Module and motor based on the commanded current and the motor velocity. On power-up, the RMS Foldback level is zero and is continually updated. When the RMS Foldback level reaches 100 percent, current foldback is activated and the Foldback Active output function is active.

Each Drive Module is designed to deliver up to 300 percent of the motor’s continuous torque for no less than the two seconds when running at 100 RPM or more. If only 150 percent of continuous torque is required, several seconds of operation before RMS foldback is typical.

During current foldback the Torque Command Actual will be limited to 80 percent continuous motor torque. Current foldback is cancelled when the RMS Foldback level falls below 70 percent. This could take several seconds or several minutes depending on the load.

The RMS Foldback value is dependent on both torque and velocity. At low speeds (<20 percent of maximum motor speed) the RMS Foldback will closely follow the Torque Command Actual. At high speeds (>50 percent of maximum motor speed) the RMS Foldback will read higher than the Torque Command Actual.
The time constant for RMS Foldback is 10 seconds. This means that if the load is 150 percent of continuous, it will take about 10 seconds to reach the foldback trip point.

\[\text{Graph of RMS Foldback Trip Point (this graph is accurate to ±5 percent)} \]

Stall Foldback

Stall Foldback prevents overheating of the Drive Module. It activates in any mode when the motor velocity is 100 RPM or less and the Torque Command causes the current to exceed the stall current threshold for 100 ms or more.

Stall Foldback will also be triggered when the drive sees repeated high currents in one of the three motor phases. This can occur when a motor is indexed back and forth between two of its electrical poles.

- For 4 pole motors this distance is 90° mechanical.
- For 6 pole motors this distance is 60° mechanical.
- For 8 pole motors this distance is 45° mechanical.

Once Stall Foldback is activated, the drive current is reduced to 80 percent of the stall current threshold until the Torque Command Actual is reduced to less than 70 percent of the stall current threshold for about 200 ms or until the motor velocity exceeds 100 RPM.

Brake Operation

Motor brake operation is controlled by the Brake Release and Brake Control input functions. These input functions can be used together to control the state of the Brake output function. The table below shows the relationship between the Brake input and Brake output functions.
Operational Overview

Note

No motion should be commanded while the brake is engaged.

<table>
<thead>
<tr>
<th>Brake Release Input</th>
<th>Off</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Control Input</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Drive Module Power Stage</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Brake Output

<table>
<thead>
<tr>
<th>Off</th>
<th>On</th>
<th>Off</th>
<th>On</th>
<th>Off</th>
<th>On</th>
<th>Off</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Eng</td>
<td>Eng</td>
<td>Diseng</td>
<td>Eng</td>
<td>Diseng</td>
<td>Diseng</td>
<td>Diseng</td>
</tr>
</tbody>
</table>

* Eng=Mechanically Engaged
Diseng=Mechanically Disengaged

Brake Release Input Function

The Brake Release input function will release the brake under all conditions. When this input function is "On", the Brake output function will be "On" (i.e., release brake). This input function overrides all other brake control, thus allowing the brake to be released while a fault is active or the power stage is disabled. See also Brake output function.

Brake Control Input Function

This input function, when active, will engage the brake unless overridden by the Brake Release input function. This input lets you externally engage the brake while allowing the Drive Module to also control the brake during fault and disabled conditions.

Brake Output Function

The Brake output function is used to control the motor holding brake. If the Brake output function is "Off", the brake is mechanically engaged. When the brake is engaged, the diagnostic display on the front of the Drive Module will display a “b”.

The Drive Module outputs are limited to 150 mA capacity, therefore, a suppressed relay is required to control motor coil. Control Techniques offers a relay, model BRM-1.
Analog Command Input

The Analog Command Input can be used as a velocity or torque command. The Drive Module accepts a ±10 VDC differential analog command on pins 14 and 15 of the Command Connector and has 14 bits of resolution.

The Analog Inputs Bandwidth, Analog Full Scale and Analog Input Zero Offset parameters are applied to the Analog Input to generate either an analog velocity or torque command. These three parameters can be edited using PowerTools FM, a FM-P or serially using Modbus.

Bandwidth

The value of the parameters sets the Low Pass Filter cutoff frequency applied to the analog command input. Signals that exceed this frequency are filtered at a rate of 20 dB/decade.

Analog Full Scale

This parameter specifies the full scale voltage for the analog input. When the Drive Module receives an analog command input equal to the Analog Input Full Scale parameter, the Drive Module will command either Full Scale Velocity or Full Scale Torque depending on the operating mode.

Analog Zero Offset

Analog Input Zero Offset is used to null any input voltage that may be present at the Drive Module when a zero velocity or torque is commanded by a controller. The amount of offset can be read with PowerTools FM software or a FM-P using the following procedure:

1. Provide the zero velocity command to the analog command input on the command connector.

2. Read the Analog Input Value.

3. Enter the Analog Input Value in the Analog Input Zero Offset.
Analog Command Wiring

Figure 76: Analog Command, Differential Wiring Diagram

Figure 77: Analog Command, Single-ended Wiring Diagram
Analog Outputs

The Drive Module has two 8 bit Analog Outputs which may be used for diagnostics, monitoring or control purposes. These outputs are referred to as Channel 1 and Channel 2. They can be accessed from the Command Connector on the Drive Module or from the diagnostics output pins located on the front of the Drive Module.

Each Channel provides a programmable Analog Output Source.

Analog Output Source options are:

- Velocity Command
- Velocity Feedback
- Torque Command (equates to Torque Command Actual parameter)
- Torque Feedback
- Following Error

Default Analog Output Source:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Output Source</th>
<th>Offset</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Velocity Feedback</td>
<td>0</td>
<td>600 RPM/volt</td>
</tr>
<tr>
<td>2</td>
<td>Torque Command</td>
<td>0</td>
<td>30 percent/volt for selected motor</td>
</tr>
</tbody>
</table>

Each channel includes a programmable Analog Output Offset and an Analog Output Scale. This feature allows you to “zoom in” to a desired range effectively increasing the resolution. The units for both of these parameters is dependent upon the Analog Output Source selection.

Analog Output Offset units:

- Velocity Command = RPM
- Velocity Feedback = RPM
- Torque Command = Percent of continuous torque for selected motor
- Torque Feedback = Percent of continuous torque for selected motor
- Following Error = Revs

Analog Output Scale units:

- Velocity Command = RPM/volt
- Velocity Feedback = RPM/volt
- Torque Command = Percent of continuous torque/volt for selected motor
- Torque Feedback = Percent of continuous torque/volt for selected motor
- Following Error = Revs/volts
Operational Overview

Example:
You could use the Analog Outputs to accurately measure velocity overshoot. For example, to measure a target velocity of 2000 RPM at a resolution of $\pm 10 \text{ V} = \pm 200 \text{ RPM}$ do the following.

1. Selected Velocity Feedback for the Analog Output Source
2. Set the Analog Output Offset to 2000 RPM
3. Set the Analog Output Scale to 20 RPM/VOLT

This will provide an active range from ± 10 Volts to represent 1800 to 2200 RPM. Therefore, the measured resolution has been increased.

Drive Module Digital Inputs and Outputs

External control capability is provided through the use of input and output functions. These functions may be assigned to any input or output line. After they are assigned to lines, external controllers such as a PLC or multi-axis controllers, may be used to affect or monitor the Drive Module operation.

Drive Modules are equipped with five optically isolated input lines (one dedicated to a Drive Module Enable function) and three optically isolated output lines. All inputs and outputs are compatible with sourcing signals (active = $+$ voltage) and are designed to operate from a $+10$ to 30 VDC. You are responsible for limiting the output current to less than 150 mA for each digital output.

These input and output lines can be accessed through the removable 10-pin I/O Connector, and through the 44-pin Command Connector.

Note
See “Input/Output and Drive Module Enable Wiring”.

Input Function Active State

The active state of an input function can be programmed to be “Active Off” or “Active On” using PowerTools FM. Making an input function “Active On” means that it will be active when $+10$ to 30 VDC is applied to the input line it is assigned to and is inactive when no voltage is applied to the line. Making an input function "Active Off" means that it will be active when no voltage is applied to the input line and inactive while $+10$ to 30 VDC is being applied.

You can also make an input function "Always Active", which means that it is active regardless of whether or not it is assigned to an input line and, if you assign it to an input line,
it will be active whether or not voltage is applied to that line. This is useful for testing the
Drive Module operation before I/O wiring is complete.

Input Line Debounce Time

You can program a “Debounce Time” which means the line will need to be active for at least
the debounce time before it is recognized. This feature helps prevent false triggering in
applications with high ambient noise.

![Input Line Diagram](image)

Figure 78: Input Line Diagram

Output Line Active State

The default active state of an output line is "Active On". This means that the output line will
supply a voltage when the result of the OR’ed output function(s) assigned to that output line
is activated by the Drive Module.

Making an output line "Active Off" means that the line will be “Off” (not conducting) when
the result of the OR’ed output function(s) assigned to that output line is active, and will supply
a voltage when the output function is inactive.

Input Functions

Travel Limit + or -

The + and - Travel Limit input functions will stop motion in the direction indicated by the
input function using the Travel Limit Deceleration rate. This feature is active in all modes.
When an axis is stopped by a Travel Limit function, it will maintain position until it receives
a command that moves it in the opposite direction of the active Travel Limit.

For example, the + Travel Limit will stop motion only if the motor is moving + but allows -
motion to move off the limit switch. Conversely, the - Travel Limit will stop motion only if
the motor is moving - but allows + motion to move off the limit switch.

If both input functions are active at the same time, no motion in either direction will be
possible until at least one of the inputs is released.
When either + or - Travel Limit input function is activated, a fault will be logged into the Fault Log, and the Drive Module will display an “L” on the LED diagnostics display on the front of the Drive Module. Once the axis is driven off the limit switch, the fault will be cleared and the “L” will disappear.

If both Travel Limit input functions are activated simultaneously, the Drive Module will respond as if the Stop input function has been activated and will use the Stop Deceleration ramp.

Stop

The Stop input function, when activated, will cause motion to stop regardless of motor direction or the operating mode. The Stop Deceleration Ramp defines the rate of velocity change to zero speed.

Activating the Stop input function causes the Drive Module to change to Velocity mode. Therefore, if you are operating in Torque mode, the Drive Module must be tuned to the load to prevent instability when activating the Stop input function.

For example, if an application is operating in Torque mode at 1000 RPM, and the Stop input function is activated with a Stop Deceleration Ramp of 500 ms/kRPM, the motor will decelerate to a stop in 500 ms.

WARNING

When the Stop input function is deactivated, the previous operating mode is restored within 400 µs and the Drive Module and motor will respond immediately with no ramping unless ramping is part of the selected mode.

Reset

This input is used to reset fault conditions and is logically OR’ed with the Reset button. A rising edge pulse is required to reset faults.

Velocity Preset Lines 1, 2 and 3

The Velocity Preset Lines are used to select one of the eight pre-defined velocities using the binary selection patterns shown below.

If you select a different Preset Velocity, the Drive Module will immediately ramp to the new velocity using the new acceleration ramp without stopping.

<table>
<thead>
<tr>
<th>Velocity Preset #3</th>
<th>Velocity Preset Line #2</th>
<th>Velocity Preset Line #1</th>
<th>Selected Velocity and Accel/ Decel Preset #</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Torque Limit Enable

This input function, when active, causes the Torque Command to be limited to the value of the Torque Limit parameter. The Torque Limit can be made "Always Active" by checking the Always Active checkbox on the Inputs tab.

Brake Release

This input function will release the brake under all conditions. If this input function is active, the Brake output function is switched to active (i.e., release brake). This overrides all other brake control, thus allowing the brake to be released while a fault is active or the power stage is disabled.

Brake Control

This input function, when active, will engage the brake unless overridden by the Brake Release input function. This input function lets you externally engage the brake, while allowing the Drive Module to also control the brake during fault and disabled conditions.

Torque Mode Enable

This input function, when active, causes the Drive Module to change operating mode to torque mode. When this input function is deactivated the default operating mode is enabled with no transitional ramping.

Output Functions

Travel Limit + or -

These outputs are active when the associated Travel Limit input function are active.
Operational Overview

Brake

This output function is used to control the motor holding brake. If the Brake output is “Off”, the brake is mechanically engaged.

Foldback Active

This output function is active when the Drive Module is limiting motor current. If the RMS Foldback value exceeds 100 percent of the continuous rating, the current foldback algorithm will limit the current delivered to the motor to 80 percent of the continuous rating.

Drive OK

This output function is active whenever no fault condition exists. Travel Limits and the Drive Module Enable have no effect on this output function.

In Motion + or -

These output function is active whenever the motor is turning at a velocity greater than the In Motion Velocity parameter in the + or - direction respectively. Default value of In Motion Velocity is 10 RPM. Hysteresis is used to avoid a high frequency toggling of this output function. This function is deactivated when the motor velocity is less than 1/2 of the In Motion Velocity parameter.

Power Stage Enabled

This output is active when the Drive Module is OK and enabled. It will go inactive when anything happens to disable the output power stage.

Fault

This output function is active whenever a Drive Module fault condition exists. The Travel Limits will also cause this output function to be active.

At Velocity

This output function is active whenever the motor is at the desired velocity (i.e., acceleration or deceleration is complete). This output is only associated with Velocity Preset Velocities.

Torque Limit Active

This output is active if the Torque Command exceeds the specified Torque Limit value. Refer to Torque Limiting in the Operating Overview section of this manual.
Velocity Limiting Active

This output function is active when the Actual Velocity Command is being limited. The velocity limit is dependent upon the maximum motor speed for the Motor Type selected.

If the Actual Velocity Command exceeds the velocity limit, the command will be limited and the Velocity Limiting Active output function will be active.

Torque Level 1 and 2 Active

These outputs are active if the Torque Command exceeds the respective Torque level value.

Temperature Current Limit Active

The Temperature Current Limit Active Output will turn on when the measured heatsink temperature is above 70°C. This output will limit the Drive Module Peak Current available to 170% of Continuous Current. This limitation only happens in the MD-410, MD-420 and MD-434 Drive Modules. This Output will stay active until the heatsink has had time to cool down to 60°C.
Options and Accessories

MDS Options

ECI-44 External Connector Interface

The ECI-44 allows access to all command and input and output signals. The ECI-44 should be mounted close to the MDS and away from any high voltage wiring. The ECI-44 comes complete with the hardware necessary for mounting to most DIN rail mounting tracks.

Figure 79: Dimensions of ECI-44

Note

Shield connection points are connected to the shell of the 44-pin “D” connector on the ECI-44.

Use tie wraps to provide a strain relief and a ground connection at the shield connection points.

If you do not wish to use the DIN rail mounting hardware, the ECI-44 can be disassembled and the mounting clips removed.
The ECI-44 wire range is #18 to 24 AWG stranded insulated wire.

Note

Wiring should be done with consideration for future troubleshooting and repair. All wiring should be either color coded and/or tagged with industrial wire tabs. Low voltage wiring should be routed away from high voltage wiring.

Figure 80: ECI-44 Signal Connections
Options and Accessories

FM-2 Indexing Module

The FM-2 is a compact and rugged indexing module that attaches to the front of the MDS drive module. It enables you to initiate up to 16 different indexes, jogging and a single home routine. It also provides eight digital input lines and four digital output lines in addition to the four input and three output lines available on the MDS drive module. The FM-2 is setup using PowerTools FM software. PowerTools FM is an easy-to-use Microsoft® Windows®-based setup and diagnostics tool.

Note

See the *FM-2 Indexing Module Reference Manual*, P/N 400507-01, for more information.

FM-3 Programming Module

The FM-3 is a compact and rugged programming module that attaches to the front of the MDS Dive Module. They provides eight digital input lines and four digital output lines in addition to the four input and three output lines available on the MDS Drive Module. The FM-3 offers complex motion profiling, along with multi-tasking user programs. A complex motion profile consists of two or more indexes that are executes in sequence such that the final velocity of each index except the last is non-zero. Logical instructions between index statements can provide a powerful tool for altering motion profiles "on the fly". The FM-3 is setup using PowerTools PRO software. PowerTools PRO is an easy-to-use Microsoft® Windows®-based setup and diagnostics tool.

Note

FM-4 Programming Module

The FM-4 is a compact and rugged programming module that attaches to the front of the MDS Drive Module. It provides eight digital input lines and four digital output lines in addition to the four input and three output lines available on the MDS drive module. The FM-4 offers complex motion profiling, along with multi-tasking user programs. A complex motion profile consists of two or more indexes that are executes in sequence such that the final velocity of each index except the last is non-zero. Logical instructions between index statements can provide a powerful tool for altering motion profiles "on the fly". The FM-4 is setup using PowerTools PRO software. PowerTools PRO is an easy-to-use Microsoft® Windows®-based setup and diagnostics tool.

Note

Figure 81: MS-5XX-00 Shunt Module Wiring Diagram

The MS-5XX-00 has internal circuitry that will protect the shunt during overload conditions. The circuitry will open the Shunt Interlock relay that is to be wired in series with the AC mains contactor. See Figure 81.
The shunt module requires a user +24 VDC power supply. The current requirement is 250 mA @ 24 VDC.

Diagnostic LEDs

Figure 82: MS-5XX-00 Shunt Module Diagnostic LED

The shunt module has three diagnostic LEDs, as follows:

Logic Power

The Logic Power LED will be illuminated when +24 VDC is applied.

Overtemp

The thermal overtemp will be illuminated when the RMS power rating of the resistor is exceeded. This will cause the shunt relay to open.

Overload

The thermal overload will be illuminated if the continuous power rating of the resistor is exceeded. This will cause the shunt’s AC Interlock relay to open. An overload condition is caused by a very high current due to a miswiring or shunt transistor failure.
Offline Setup

Note

Generally, online setup is used when editing parameters in a drive. Offline setup editing is usually only done when not connected to a drive.

EZ Setup View

The EZ Setup view is the default tab that is displayed each time you open the PowerTools software. This tab allows you to set most of the parameters needed to configure your drive, with the exception of the digital input and output functions.

![PowerTools Window, EZ Setup View, Offline](image)

You can change the software so that the Detailed Setup tab becomes the default view.

Step 1: Changing the Default View

To select the default setup screen view (EZ Setup or Detailed Setup):

1. Select “Preferences” from the Options menu.
2. Select the “General” option from the menu.
3. Click the “Default to Detailed View” check box to change view to Detailed Setup or deselect to change view to EZ Setup.
4. Click the OK button.
Detailed Setup View

The Detailed Setup view allows you to access many additional parameters and details about your drive. When you are online with a drive, PowerTools FM will display twelve tabs if you have selected to view the Advanced tab in the Options/Preferences/General dialog box.
Quick Start

Step 2: Opening an Offline Configuration Window

To open an offline Configuration Window, click the New icon from the toolbar or select New from the **File** menu.

![New Dialog Box](image)

Figure 86: New Dialog Box

When the Predefined Setup Selection dialog box appears, select the desired predefined setup and press the **OK** button. A new Configuration Window will be displayed.

All drive setup parameters are accessible in the tabs of the offline configuration window.

You can now proceed to setup the drive parameters as desired.

Step 3: Entering General Drive Setup Information

The EZ Setup tab contains system data such as drive type, motor type and axis name.

![Offline EZ Setup Tab](image)

Figure 87: Offline EZ Setup Tab

Identification Group:

1. Enter an identifying name in the “Name” box for the drive you are setting up. You can use up to 24 alpha-numeric characters.
2. Enter the “Target Drive Address(es)” to which you wish to download the setup information. Unless you have changed the Modbus address of your drive, leave this parameter set to the default value of 1.

You may use commas (,) or spaces () to separate individual drive addresses or you may use hyphens (-) to include all the drive addresses within a range. For example, if you wanted to download to drives 1, 3, 4, 5, 6, 7 and 9 you could enter the addresses like this: 1,3-7,9.

Configuration Group:

EZ Setup view, drive type and motor type are available. Detail Setup view, drive type and line voltage are available. Motor type is selected using the Motor tab.

1. Click the down arrow of the “Drive Type” list box, then select the drive model for the drive you are currently setting up.

2. Click the down arrow of the “Motor Type” list box, then select the motor connected to the drive you are setting up. PowerTools FM will only display the motor models that are compatible with the “Drive Type” you selected.

Positive Direction Selections:

In Detail Setup view, click which direction, clockwise (CW) or counterclockwise (CCW), is to be considered as motion in the positive direction.

Note

CW and CCW rotation is determined by viewing the motor from the shaft end.

Figure 88: Clockwise Motor Rotation

Step 4: Selecting an Operating Mode

Depending on the mode you select, PowerTools FM software will display related submodes and/or additional parameters that pertain to the main operating mode you selected.

Pulse Mode Setup

This procedure assumes that you have connected the proper pulse mode wiring as described in the "Installation" section of this manual.
Quick Start

1. Select the “Pulse Mode” radio button from the Operating Mode group.

2. Select one of the Interpretation group radio buttons; “Pulse/Pulse”, “Pulse/Direction” or “Pulse/Quadrature”.

3. Select Differential or Single Ended from the Source group.

4. Enter a “Ratio”. The default is 1 output motor revolution to 8192 input pulse counts. This can be a signed (+/-) number.

Note
The coarsest ratio possible is 10 input counts per motor revolution. Settings below this will cause an overspeed fault.

5. If needed, enable the “Following Error Limit” by checking the “Enable” check box.

6. Enter a value between 0.0010 and 10.000 revolutions of the motor.

Velocity Mode Setup
The following Velocity mode setup procedures assume that you have connected the proper analog command wiring as described in the “Installation” section of this manual.

Velocity Analog Submode Setup
1. Select the “Velocity Mode” radio button from the Operating Mode group.

2. Select the “Analog” submode radio button from the Submode group.
3. Enter a “Full Scale Velocity” value. The velocity is equal to the Analog Full Scale parameter which is defaulted to a 10V analog command.

Velocity Presets Submode Setup

1. Select the “Velocity Mode” radio button from the Operating Mode group.
2. Select the “Presets” submode radio button from the Submode group.
3. Select the desired “Velocity Preset” number.
4. Enter a “Velocity Preset” for each “Preset Number” being used.
5. Enter an “Accel/Decel Presets” value for each “Preset Number” being used.
6. Click on the Inputs tab. Assign the “Velocity Preset Line #1” and “Velocity Preset Line #2” functions to input lines by highlighting the function then selecting one of the “Input Line Selection” radio buttons or by dragging the highlighted preset to the desired input lines.
7. The Velocity Preset Input functions can be made Always Active or Active Off by using the respective check box.

Velocity Summation Submode Setup

1. Select the “Velocity Mode” radio button from the Operating Mode group.
2. Select the “Summation” submode radio button from the Submode group.
3. Select the desired “Velocity Preset” number.
4. Enter a "Velocity Preset" for each "Preset Number" being used.
5. Enter an “Accel/Decel Presets” value for each "Preset Number" being used.
Quick Start

Figure 92: Velocity Summation Submode

Torque Mode Setup

This procedure assumes that you have connected the proper analog command wiring as described in the "Installation" section of this manual.

1. Select the “Torque Mode” radio button from the Operating Mode group.

 Figure 93: Operating Mode, Torque Mode Selected

2. Enter a “Full Scale Torque” value. This "Full Scale Torque" value corresponds to an Analog Full Scale parameter, which is defaulted to a 10V analog command.

Torque Limit Setup

This function can be active in any Operating Mode.

1. Enter a "Torque Limit" value. The "Torque Limit" is the value at which the Torque Command will be limited when the "Torque Limit Enable" input function is active.

2. Click on the Inputs tab. Assign the "Torque Limit Enable" input function to an input line by highlighting the function, then selecting one of the "Input Line Selection" radio buttons or by dragging the highlighted input function to the desired input line.

Torque Level 1 and 2 Setup

This function can be active in any Operating Mode.

1. Click on the Outputs tab.

2. Highlight the “Torque Level 1 Active or Torque Level 2 Active” output function in the “Output Functions” window.
3. Select an Output Line radio button that corresponds to the output line you wish to assign this function.

4. In Detailed Setup view, click on the Torque tab.

5. Enter a value into the Torque Level 1 and/or Torque Level 2. The Torque Levels correspond to the Analog Full Scale parameter, which is defaulted to a 10V analog command.

![Figure 94: Torque Tab](image)

Step 5: Entering Load Parameters

In Detailed Setup view select the Motor tab otherwise the EZ Setup tab can be used. The load on the motor is specified by the Inertia Ratio and Friction parameters. Application requirements are specified by the Response adjustment. If more accurate tuning is required, see the “Tuning Procedures” section.

Note

Also, refer to the Enable High Performance Gains and Feedforward Gains features.

Inertia Ratio

Inertia Ratio specifies the load to rotor inertia ratio and has a range of 0.0 to 50.0. A value of 1.0 specifies that load inertia equals the rotor inertia (1:1 load to motor inertia). The drives can control up to a 10:1 inertia mismatch with the default Inertia value of 0.0. Inertial Ratio mismatches of over 50:1 are possible with some minimal additional adjustments.
Quick Start

Note

If the exact inertia value is unknown, the value that is entered should be conservative, because values higher than the actual can cause the motor to oscillate.

Friction

This parameter specifies the viscous friction component of the load and has a range of 0.0 to 100.0. The units are percent continuous torque increase per 100 RPM. This value is used to tune the velocity and position loops, including feedforward compensation (if enabled). A typical value would be between 0.0 and 1.0.

Note

If the value is unknown, use a conservative value or a zero value.

Response

The Response adjusts the velocity loop bandwidth with a range of 1 to 500 Hertz. In general, it affects how quickly the drive will respond to commands, load disturbances and velocity corrections. The effect of Response is greatly influenced by the status of the High Performance Gains. With High Performance Gains enabled, the maximum value recommended is 100 Hz.

Step 6: Assigning Inputs

Inputs are assigned in the Inputs tab which is divided into two windows. The "Input Functions" window, on the left side, displays the input functions available, the function polarity and the always active state. The "Input Lines" window, on the right side, displays the four input lines, the debounce value and input function assignments.
To assign an Input Function to an Input line:

1. Assign an input by highlighting an input function in the "Input Functions" window and selecting the desired input radio button or by dragging the highlighted input function to the desired input in the "Input Lines" window.

2. To unassign an input function from an input line, select the desired input function from the “Input Functions” window, then select the “Unassigned” radio button or by dragging the highlighted input assignment back to the "Input Functions" window.

To make an Input Function “Active Off”:

1. Select the desired input function in the “Input Functions” window.

2. Click the “Active Off” check box. The Active State column in the "Input Functions" window will automatically update to the current setup.

To make an Input Function “Always Active”:

1. Select the desired input function in the “Input Functions” window.

2. Click the “Always Active” check box. The Active State column in the "Input Functions" window will automatically update to the current setup.

Step 7: Assigning Outputs

Output functions are assigned in the Outputs tab which is divided into two windows. The “Output Functions” window, on the left side, displays the output functions available. The
Quick Start

“Output Lines” window, on the right side, displays the three output lines, the line active state and the output function assignments.

![Output Functions Window](image)

Figure 96: Outputs Tab

To assign an Output Function to an Output Line:

1. Assign an output by highlighting an output function in the "Output Functions" window and selecting the desired output radio button or by dragging the highlighted output function to the desired output in the "Output Lines" window.

2. To unassign an output function from an output line, select the desired output function from the “Output Functions” window, then select the “Unassigned” radio button or by dragging the highlighted output assignment back to the "Output Functions" window.

To make an Output Function “Active Off”:

1. Select the desired output function in the “Output Lines” window.

2. Click the “Active Off” check box. The Active State column in the "Output Lines" window will automatically update to the current setup.

Online Setup

If you have previously created a configuration file, go to Step 3. If you do not have one done, go to Offline Setup Step 1. Do Steps 1 through 9 in the previous section, "Offline Setup", before establishing communications.
Note

Generally, online setup is used when editing parameters in a drive. Offline setup editing is usually only done when not connected to a drive.

Step 1: Establishing Communications with Drive

Now that the basic MDS drive setup parameters are entered, it is time to establish communications with the Drive Module and download the configuration data. Before proceeding, be sure to connect the serial communication cable between your PC and the Drive Module.

The first step in establishing serial communications is to select the Com port and the baud rate using the procedure below:

1. Clicking on the Options menu.

2. Select the "Preferences/Communications" option. The Modbus Setup dialog box will be displayed.

3. Select the “Configure Serial Port” button. The Communications Setup dialog box below will be displayed.

4. Select the Com port you will be using on your PC and baud rate.
5. Click the OK button.

6. Click the OK button in the Modbus Setup dialog box.

Note
The default baud rate for all drives is 19200.

Step 2: Downloading the Configuration File

When you are ready to download the information in the current Configuration Window, go to the Setup tab and enter the address(es) of the drive(s) you wish to download to in the “Target Drive Address(es)” text box.

You may use commas (,) or spaces () to separate individual drive addresses or you may use hyphens (-) to include all the drive addresses within a range. For example, if you wanted to download to drives 1, 3, 4, 5, 6, 7 and 9 you could enter the addresses like this: 1,3-7,9.

Note
To download to more than one drive, all drive models and motor models must be the same and any FM modules attached to the MDS Drive Modules must all be of the same model and firmware revision.

Click the Download button at the bottom of the Configuration Window (or click the Download icon in the toolbar).

PowerTools FM will establish communications and transfer all the information in the current Configuration Window to the drive(s) you select in the Download window.

Note
Downloading will automatically clear an Invalid Configuration fault (“U” fault).

Step 3: Opening an Online Configuration Window

If you are not already online with the drive, use this section to upload a configuration for online editing.

To open an online Configuration Window, click the Upload icon on the toolbar. PowerTools FM will display the Scanning dialog box while it scans your PC’s serial ports for any compatible devices.

Next, the Upload Drive Configuration dialog box is displayed. This dialog box allows you to select the device(s) you wish to upload into a Configuration Window.
Selected Drives Radio Button

If you have only one device connected, that device’s address will be displayed in the Selected drives data box. If you have more than one device connected in a multi-drop configuration, the Selected drives data box will be empty. You can then select either the All drives radio button or the Show drives button.

All Drives Radio Button

If you select the All drives radio button, PowerTools FM will open a Configuration Window for each device connected to your PC.

Show drives . . . Button

The Show drives button will display the Available Devices dialog box. This dialog box displays a list of the devices that are attached to your system (or network). This includes both Control Techniques and non-Control Techniques devices. Devices which are not serviceable by PowerTools FM software will be grayed.

Figure 100: Available Devices Dialog Box

From this dialog box select the device(s) you wish to upload into a Configuration Window. You can only select non-grayed items. The list box is updated at regular intervals. Please
allow time when connecting and disconnecting devices to the system. Click the OK button to begin the upload.

Step 4: Operation Verification

After downloading a configuration file to the drive, you may want to verify the operation of the system using the checklist below.

1. I/O powered.
2. Connections installed.
3. The drive enabled.
4. The characters “V, T, P or +” displays verified on the drive "LED" status display with the decimal point "On".

Step 5: Saving the Configuration File

To save the drive setup information, select Save from the **File** menu. Follow the dialog box instructions.

Step 6: Printing the Configuration File

To generate a printed copy of all the data in the drive configuration, select Print from the **File** menu. If you print while online, the print-out will include several pages of useful online diagnostic information.

Step 7: Disconnecting Communications

After you successfully download to the drive, you may want to disconnect the serial communications link between the drive and your PC to clear the serial port or to access some PowerTools FM options only available when offline.

To disconnect serial communications, click the **Disconnect** button at the bottom of the Configuration Window (or select the Disconnect command from the **Device** menu).
Setting Up Parameters

EZ Setup/Detailed Setup Tab

This is the default tab that is displayed each time you open a Configuration Window.

Figure 101: Default Offline EZ Setup Tab

Identification Group

Name

Enter a 24 character alpha-numeric name for the drive you are currently setting up. Assigning a unique name for each drive in your system allows you to quickly identify a drive when downloading, editing and troubleshooting. All keyboard characters are valid.

Target Drive Address(es)

Enter the “Target Drive Address(es)” you wish to download/upload the setup information to/from.

To download to multiple drives simultaneously, separate the device addresses with commas, spaces or hyphens. Commas and spaces separate individual addresses. Hyphens indicate to include all address, between the indicated addresses, (i.e., 1, 3, 7) means download to addresses 1 and 3 and 7 only. (1 - 7) indicates, download to addresses 1, 2, 3, 4, 5, 6, 7. If you download to more than one device simultaneously, they must all be the same drive and any
Modular Drive System Reference Manual

FM modules attached to MDS Drive Modules must all be of the same model and firmware revision.

Configuration Group (EZ Setup view only)

Drive Type

Select the drive model for the system you are currently setting up. PowerTools FM software will only display the motor models that are compatible with the drive you selected and any User Defined Motors. For User Defined Motors See “User Defined Motors” on page 189.

Motor Type

Select the motor you wish to use. PowerTools FM software will only display the motor models that are compatible with the drive you selected and any User Defined Motors.

⚠️ **CAUTION**

Selecting the wrong motor type can cause poor performance and may even damage the motor and/or drive.

ConfigurationMD Group (Detailed Setup view only)

![Detailed Setup Window for an MDS](image)

Figure 102: Detailed Setup Window for an MDS.
Setting Up Parameters

Drive Type

Select the drive model for the system you are currently setting up. PowerTools FM software will only display the motor models that are compatible with the drive you selected and any User Defined Motors. For User Defined Motors See “User Defined Motors” on page 189.

Switching Frequency

This parameter is used to select the Drive Module switching frequency. There are two switching frequencies, 5 KHz (default) and 10 KHz. When using 10KHz the Drive Module current rating will be derated.

Load Group

This is found on the EZ Setup tab in EZ Setup view or on the Motor tab in Detailed Setup view.

Inertia Ratio

Inertia Ratio specifies the load to rotor inertia ratio and has a range of 0.0 to 50.0. If the exact inertia is unknown, a conservative approximate value should be used. If you enter an inertia value higher than the actual inertia, the resultant motor response will tend to be more oscillatory.

Friction

This parameter is characterized in terms of the rate of friction increase per 100 motor RPM. If estimated, always use a conservative (less than or equal to actual) estimate. If the friction is completely unknown, a value of zero should be used. A typical value used here is less than one percent.

Response

The Response adjusts the velocity loop bandwidth with a range of 1 to 500 Hz. In general, it affects how quickly the drive will respond to commands, load disturbances and velocity corrections. A good value to start with (the default) is 50 Hz. The effect of Response in greatly influenced by High Performance Gain settings. With High performance Gains enabled, the maximum value recommended is 100 Hz.
Operating Mode Group

Disabled Radio Button

Selecting this radio button to put the drive in the Disabled Mode. This is equivalent to removing the Drive Enable input. In Disabled the Drive Module can be configured or diagnosed and the I/O will function.

Figure 103: Operating Mode, Disabled Mode Selected

Pulse Mode Radio Button

Selecting this radio button puts your drive into Pulse mode and displays three Interpretations: Pulse/Pulse, Pulse/Direction and Pulse/Quadrature. In Pulse mode the drive will receive pulses which are used to control the position and velocity of a move.

Velocity Mode Radio Button

Selecting this radio button puts your drive into Velocity mode which includes three Submodes: Analog, Presets and Summation.

Torque Mode Radio Button

Selecting this radio button will put your drive in Torque mode and activates the Full Scale Torque and the Torque Limit data entry boxes. In Torque mode the drive develops torque in proportion to the voltage received on the Analog Input. The Analog Input is scaled to the Analog Torque Command by the Full Scale Torque, Analog Input Full Scale and Analog Input Zero Offset parameters.

Pulse Mode Interpretation Group

Figure 104: Operating Mode, Pulse Mode Selected
Setting Up Parameters

Interpretation Group

Pulse/Pulse Radio Button

Selecting this radio button puts your drive in Pulse/Pulse interpretation. In Pulse/Pulse mode, pulses received on the A channel are interpreted as positive changes to the Pulse Position Input, and pulses received on the B channel are interpreted as negative changes to the Pulse Position Input.

Pulse/Direction Radio Button

Selecting this radio button puts your drive in Pulse/Direction interpretation. In Pulse Direction mode, pulses are received on the A channel, and the direction is received on the B channel. If the B is high, pulses received on the A are interpreted as positive changes to the Pulse Position Input. If the B is low, pulses received on the A are interpreted as negative changes to the Pulse Position Input.

Pulse/Quadrature Radio Button

Selecting this radio button puts your drive in Pulse/Quadrature interpretation. If Pulse Quadrature is selected, a full quadrature encoder signal is used as the command. When B leads A encoder counts received are interpreted positive changes to the Pulse Position Input. When A leads B encoder counts received are interpreted as negative changes to the Pulse Position Input. All edges of A and B are counted, therefore one revolution of a 2048 line encoder will produce a 8192 count change on the Pulse Position Input.

Source Group

The Drive Module is able to accept Differential or Single Ended signals in Pulse Mode. The hardware connections are on separate pins and thus the Drive Module must be configured to select the appropriate source.

Differential Radio Button

Selects the differential hardware input of the drive to receive pulses (default) these pulse inputs are as follows:

<table>
<thead>
<tr>
<th>ECI-44 Terminal</th>
<th>Command Connector Pin #</th>
<th>Pulse-Direction Signal</th>
<th>Pulse-Pulse Signal</th>
<th>Pulse Quadrature Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync Enc In “A”</td>
<td>27</td>
<td>Pulse</td>
<td>Pulse +</td>
<td>A</td>
</tr>
<tr>
<td>Sync Enc In “A/”</td>
<td>41</td>
<td>Pulse/</td>
<td>Pulse +/-</td>
<td>A/</td>
</tr>
<tr>
<td>Sync Enc In “B”</td>
<td>26</td>
<td>Direction</td>
<td>Pulse -</td>
<td>B</td>
</tr>
<tr>
<td>Sync Enc In “B/”</td>
<td>40</td>
<td>Direction/</td>
<td>Pulse -/</td>
<td>B/</td>
</tr>
</tbody>
</table>

Differential Inputs are typically needed for pulse rate 7250 kHz or high ambient noise environments.
Modular Drive System Reference Manual

Single Ended Radio Button

Selects the single ended hardware input of the drive to receive pulses (default) these pulse inputs are as follows:

<table>
<thead>
<tr>
<th>ECI-44 Terminal</th>
<th>Command Connector Pin #</th>
<th>Pulse-Direction Signal</th>
<th>Pulse-Pulse Signal</th>
<th>Pulse Quadrature Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A or NC2</td>
<td>20</td>
<td>Pulse /</td>
<td>Pulse + /</td>
<td>A</td>
</tr>
<tr>
<td>B or NC1</td>
<td>36</td>
<td>Direction</td>
<td>Pulse - /</td>
<td>B</td>
</tr>
</tbody>
</table>

Ratio Formula

Defines the number of command pulses it will take to move the motor the distance specified in the Pulse Mode Ratio Revolutions. The default value is 1 motor revolution per 8192 counts.

The coarsest ratio possible is 10 input counts per motor revolution. Setting a ratio to fewer than 10 input counts per motor revolution will cause an Overspeed fault without generating motion.

Following Error Limit Group

Enable Check Box

Check this box to enable or disable the Following Error Limit. The Following Error is the algebraic difference between the Position Command and the Position Feedback. It is positive when the Position Command is greater than the Position Feedback. If the absolute value of the following error exceeds the value you enter here, the drive will generate a Following Error fault. All accumulated Following Error will be cleared when the drive is disabled.

Following Error Limit

The Following Error Limit is functional in Pulse mode only. This limit is in motor revolutions and has a range of .001 to 10.000 revolutions.

Velocity Mode Submode Group

Analog Radio Button

Selecting this radio button puts the drive into Analog submode. In Velocity mode the drive develops velocity in proportion to the voltage received on the Analog Input. The Analog Input is scaled to the Analog Velocity Command by the Full Scale Velocity, Analog Input Full Scale, and Analog Input Zero Offset parameters.

For example:
Setting Up Parameters

+5V = 2000 RPM CW
-5V = 2000 RPM CCW
Analog Input Full Scale = 10V
Full Scale Velocity = 4000 RPM

Figure 105: Operating Mode, Velocity Mode Selected

Full Scale Velocity

This parameter is the maximum motor velocity (in RPM) desired when the drive receives an analog voltage equal to the Analog Input Full Scale parameter setting.

Note

Full Scale Velocity and Analog Input Full Scale do not set limits. They only set the proportion of motor speed to Analog Input Voltage.

The Full Scale Velocity and Analog Input Full Scale parameters are used in the Analog or Summation operating modes.

Default values:

<table>
<thead>
<tr>
<th>Motor Selection</th>
<th>Full Scale Velocity @ Analog Input Full Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-320, HT-330</td>
<td>5000 RPM @ 10V</td>
</tr>
<tr>
<td>HT-345, HT-355</td>
<td>4000 RPM @ 10V</td>
</tr>
<tr>
<td>MH-455, MH-490, MH-4120</td>
<td>3000 RPM @ 10V</td>
</tr>
<tr>
<td>MH-8350, MH-8550, MH-8750</td>
<td>3000 RPM @ 10V</td>
</tr>
<tr>
<td>95UWB, 95UMD, 115UMB, 115UMD, 142UMB, 142UMD, 190UMA, 190UMB, 190UMC</td>
<td>3000 RPM @ 10V</td>
</tr>
</tbody>
</table>

Presets Radio Button

Selecting this radio button puts the drive into Presets submode. Presets submode provides up to eight digital Velocity Presets and associated Accel/Decel Presets. At any time, only one Velocity Preset can be selected. They are selected using the Velocity Preset 1, the Velocity Preset 2 and the Velocity Preset 3 input functions.
Figure 106: Velocity Presets

Velocity Presets

Enter a value for each of the Velocity Presets you wish to use. The units are RPM and the range is from ± maximum motor velocity. A positive value will cause CW motion and a negative value will cause CCW motion. (Motor direction is determined as you face the shaft end of the motor).

Accel/Decel Presets

Enter an Accel/Decel Presets value for each of the velocity presets you are using. The units are milliseconds per 1000 RPM and the range is from 0 to 32700.0. Default is 1000 ms/kRPM.

Summation Radio Button

Selecting this radio button puts the drive into Summation submode. Summation Velocity operating mode is defined as the summation of the Velocity Command Analog and the Velocity Command Preset to produce the Velocity Command.

Figure 107: Full Scale Velocity

Velocity Presets

Enter a value for each of the Velocity Presets you wish to use. The units are RPM and the range is from ± maximum motor velocity. A positive value will cause CW motion and a negative value will cause CCW motion. (Motor direction is determined as you face the shaft end of the motor).
Setting Up Parameters

Accel/Decel Presets

Enter an Accel/Decel Presets value for each of the Velocity Presets you are using. The units are milliseconds per 1000 RPM and the range is from 0 to 32700.0. Default is 1000 ms/kRPM.

Full Scale Velocity

This parameter is the motor velocity (in RPM) desired when the drive receives an analog voltage equal to the Analog Input Full Scale parameter setting.

Note

Full Scale Velocity and Analog Input Full Scale do not set limits. They only set the proportion of motor speed to Analog Input Voltage.

The Full Scale Velocity and Analog Input Full Scale parameters are used in the Analog or Summation operating modes.

Default values:

<table>
<thead>
<tr>
<th>Motor Selection</th>
<th>Full Scale Velocity @ Analog Input Full Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-320, HT-330</td>
<td>5000 RPM @ 10V</td>
</tr>
<tr>
<td>HT-345, HT-355</td>
<td>4000 RPM @ 10V</td>
</tr>
<tr>
<td>MH-455, MH-490, MH-4120</td>
<td>3000 RPM @ 10V</td>
</tr>
<tr>
<td>MH-8350, MH-8550, MH-8750</td>
<td>3000 RPM @ 10V</td>
</tr>
<tr>
<td>95UWB, 95UMD, 115UMB, 115UMD, 142UMB, 142UMD, 190UMA, 190UMB, 190UMC</td>
<td>3000 RPM @ 10V</td>
</tr>
</tbody>
</table>

Torque Mode Group

Selecting this radio button will put your drive in Torque mode and activates the Full Scale Torque and the Torque Limit data entry boxes. In Torque mode the drive develops torque in proportion to the voltage received on the Analog Input. The Analog Input is scaled to the Analog Torque Command by the Full Scale Torque, Analog Input Full Scale and Analog Input Zero Offset parameters.

For example:

- 5V = Motor continuous torque
- 10V = Motor peak torque (2 times continuous)
- +10V = Peak motor torque CW
- -10V = Peak motor torque CCW
Figure 108: Operating Mode, Torque Mode Selected

Full Scale Torque

This parameter specifies the Torque Command when the Analog Input voltage is equal to the Analog Full Scale parameter.

Torque Limit

This value is the level which the Torque Command will be limited to when the Torque Limit input function is active. To make the Torque Limit always active, set the Torque Limit Input Function to be Always Active.

Peak Torque Available

This displays the maximum torque available from the selected drive and motor combination. This is calculated by PowerTools FM and is not a drive parameter.

Positive Direction Group (Detailed Setup view only)

Figure 109: Positive Direction in Detailed Setup View

CW Motor Rotation Radio Button

This defines that the motor will rotate clockwise when given a positive velocity, torque or position command. CW/CCW is defined when facing the motor output shaft.
Setting Up Parameters

CCW Motor Rotation Radio Button

This defines that the motor will rotate counterclockwise when given a positive velocity, torque or position command. CW/CCW is defined when facing the motor output shaft.

Inputs Tab

This tab is divided into two windows: The “Input Functions” window, on the left side, displays the input functions available, the function polarity and the always active state. The “Input Lines” window, on the right side, displays the four input lines, the debounce value and input function assignments.

![Input Functions Window](image)

Figure 111: Inputs Tab

Input Functions Window

This window allows you to select the input function you wish to assign to an input line.

Active State

The active state of each input function is displayed next to the output function. See the "Active Off" check box section on the following page.

Always Active

The setting for Always Active is displayed next to each input function. See "Always Active" check box section on the following page.
Input Line Selection List Box

This list box allows you to assign or unassign a highlighted Input Function to an Input Line. Click on the list box arrow to see the Input lines. Then click on the line numbers to assign the function. Assigning the input functions can also be accomplished by dragging the Input Function over and dropping it onto an Input line. To unassign an input function, highlight the function in the Input Lines window and press the delete key or drag the input function from the Input Lines window back to the Input Functions window.

Active Off Check Box

This check box allows you to change the “Active On/Off” state. Select the desired function in the input functions window, then check or uncheck the “Active Off” checkbox.

Making an input function “Active On” means that it will be active when +10 to 30 VDC is applied to the input line it’s assigned to and is inactive when no voltage is applied to the line. Making an input function "Active Off" means that it will be active when no voltage is applied to the input line and inactive while +10 to 30 VDC is being applied.

Always Active Check Box

This check box is used to make an input function “Always Active”. When you make an input function always active, it’s active whether assigned to an input line or not. If you make an input function “Always Active” then assign it to an input line, that function will be active whether or not voltage is applied to the line it is assigned to.

Input Lines Window

Debounce

The debounce value is displayed next to each input line. See “Debounce” below.

Functions assigned...

This feature displays the Input Function assigned to each particular Input Line.

Debounce

This feature helps prevent false input triggering in noisy electrical environments. Enter a “Debounce Time” in milliseconds. The value entered here is the minimum amount of time the input line will need to be active before it is recognized as a valid input.
Setting Up Parameters

Outputs Tab

This tab is divided into two windows: The “Output Functions” window, on the left side, displays the available output functions. The “Output Lines” window, on the right side, displays the output lines, the line active state and the output function assignments.

Figure 113: Outputs Tab

Output Functions Window

This window allows you to select the output function you wish to assign to an output line.

Output Line Selection List Box

This list box allows you to assign or unassign the currently highlighted Output Function to an Output Line. Click on the list box arrow to see the possible assignment lines. Then click on one of the line numbers to assign the function. This list box would normally be used when a mouse is not available to navigate the software. Assigning the input functions can also be accomplished by dragging the Output Function and dropping it onto an Output line. To unassign an output function, highlight the function in the Output Lines window and press the delete key or drag the output function from the Output Lines window back to the Output Functions Window.
Output Lines Window

Active State
The setting for “Active State” is displayed next to each output function. See “Active Off” check box below.

Functions Assigned ...
This feature displays the Output Function assigned to each particular Output Line.

Active Off Check Box
The default active state of an output line is "Active On". This means that the output line will supply a voltage when the result of the logical OR of the output function(s) assigned to that output line is active.

Making an output line "Active Off" means that the line will be “Off” (not conducting) when the result of the logical OR of the output function(s) assigned to that output line is active, and will supply a voltage when the logical OR of the output function(s) is not active.
Position Tab (Detailed Setup view only)

This tab is only definable in Pulse mode and allows you to enable and define the Following Error Limit and if you are on line, view actual operating parameters.

Limits Group

Enable Following Error Limit Check Box

Check this box to enable or disable the Following Error Limit.

Following Error Limit

This parameter only has an effect in Pulse mode. The Following Error is the difference between the Position Command and the Position Feedback. It is positive when the Position Command is greater than the Position Feedback. If the absolute value of the following error exceeds the value you enter here, the drive will generate a Following Error Fault (F). All accumulated Following Error will be cleared when the drive is disabled.

The Following Error Limit is in motor revolutions and has a range of .001 to 10.000 revolutions.
Actual Group

Pulse Position Input

This parameter returns the total number of actual pulses received on the pulse input hardware. This value is active in all operating modes.

Position Command

This is the commanded position generated by either the pulse command or velocity command. In Pulse Summation mode, it is the sum total position command by both pulse and velocity commands.

Following Error

The Following Error is the difference between the Position Command and the Position Feedback. It is positive when the Position Command is greater than the Position Feedback.

Encoder Feedback

The motor position in encoder counts since power-up when the value was set to zero. This is a signed 32 bit value. The motor position in encoder counts since power-up when the value was set to zero. This parameter can be rewritten anytime after power-up.

Position Feedback

This is the feedback position of the motor. This parameter displays the motor position in revolutions and fractions since this parameter was set to zero since power-up.
Setting Up Parameters

Velocity Tab (Detailed Setup view only)

This tab allows you to set the drive limits, and if you are online, view the actual operating velocity feedback parameters.

![Velocity Tab](image)

Figure 115: Velocity Tab

Limits Group

Stop Deceleration

The value you enter here defines the rate of velocity change to zero speed when a Stop input function is activated.

The units are ms/kRPM and the range is from 0 to 32700.0. The default is 100 ms/kRPM.

Travel Limit Deceleration

The value you enter here defines the rate of velocity change to zero speed when a Travel Limit input function is activated.

The units are ms/kRPM and the range is from 1.0 to 5000.0. Default is 100 ms/kRPM.
Modular Drive System Reference Manual

Analog Accel/Decel Limit

This parameter determines the maximum accel and decel rate that will be allowed when using the Analog input in Analog Velocity mode. It does not affect the Stop decel or Travel limit decel rates.

Overspeed Velocity

This parameter specifies the maximum allowable speed. If the Velocity Feedback exceeds either the drive’s internal overspeed fault limit or the value of the Overspeed Velocity which is lower, an Overspeed fault will be generated. The internal overspeed fault limit is equal to 150 percent of the Motor Maximum Operating Speed.

Max Motor Speed

Displays the maximum rated motor speed for the selected motor as defined by the motor specification file. For the User Defined Motors this is defined in the MOTOR.DDF file.

Trigger Group

In Motion Velocity

This parameter sets the activation point for both the In + Motion and In - Motion output functions. The output function will deactivate when the motor velocity slows to half of this value. The default is 10 RPMs.

Actual Group

Preset Command

Preset Velocity Command is based on the velocity preset selected. Units are in RPMs.

Analog Command

Analog command voltage currently being applied to the analog command input on the command connector. Units are in RPMs.

Velocity Command

The Velocity Command is the actual command received by the velocity loop. Units are in RPMs.
Setting Up Parameters

Velocity Feedback

This parameter is the actual motor velocity feedback in RPMs.

Velocity Presets

Enter a value for each of the Velocity Presets you wish to use. The units are RPM and the range is from ± maximum motor velocity. A positive value will cause CW motion and a negative value will cause CCW motion. (Motor direction is determined as you face the shaft end of the motor).

Accel/Decel Presets

Enter an Accel/Decel Presets value for each of the velocity presets you are using. The units are milliseconds per 1000 RPM and the range is from 0 to 32700.0. Default is 1000 ms/kRPM.

Torque Tab (Detailed Setup view only)

This tab allows you to edit the Torque Limit and view the following torque parameters. These parameters are continuously updated when you are online with the drive.

![Figure 116: Torque Tab](image)

Figure 116: Torque Tab
Note
The Torque Limit value takes effect only when the Torque Limit Enable input function is active.

Actual Group

Torque Command
This parameter returns the torque command value before it is limited. The Torque Command may be limited by either the Torque Limit (if the Torque Limit Enable input function is active) or current foldback.

Torque Limit
This value is the level which the Torque Command will be limited to when the Torque Limit input function is active. To make the Torque Limit always active, set the Torque Limit Input Function to be "Always Active".

Peak Torque Available
This displays the maximum torque available from the selected drive and motor combination. This is calculated by PowerTools FM and is not a drive parameter.

Actual Torque Command
Displays the Torque command after all limiting. This command is used by the current loop to generate motor torque.

Foldback RMS
This parameter accurately models the thermal heating and cooling of the drive and motor. When it reaches 100 percent, current foldback will be activated.

Torque Level 1 and 2
This parameter sets the activation level for the appropriate Torque Level output function.

Motor Tab (Detailed Setup view only)
This tab allows you to select the motor to be used with the current drive (only when offline with the drive). Standard or user-defined motors (available in the MOTOR.DDF file) are allowed selections. The drive selected will affect the standard motor options but the user-
Setting Up Parameters

defined motors are always available. All other parameters on the Motor tab are related to the load on the motor and application requirements.

Note

If you are online with the drive, the Motor Type will be grayed.

All parameters on the Motor tab are related to the load on the motor and application requirements.

The load on the motor is specified by two parameters: Inertia Ratio and Friction. Typical application requirements are specified by the response adjustment and Feedforward Gains. Position Error Integral is provided to compensate for systems with high friction or vertical loads. A Low Pass Filter is provided to filter machine resonance that are present in some applications.

![Motor Tab](image)

Figure 117: Motor Tab

Configuration Group

Motor Type

Select the motor you wish to use. PowerTools FM software will only display the motor models that are compatible with the drive you selected and any user defined motors.
Selecting the wrong motor type can cause poor performance and may even damage the motor and/or drive.

Low Pass Filter Group

Low Pass Filter Enable Checkbox

This enables a low pass filter applied to the output of the velocity command before the torque compensator. The low pass filter is only active in Pulse and Velocity modes, not Torque Modes.

Low Pass Frequency

This parameter defines the low pass filter cut-off frequency signals exceeding this frequency will be filtered at a rate of 40 db. per decade.

Encoder Output Group

Encoder Scaling Check Box

This check box enables the Encoder Scaling feature. When not enabled, the encoder output density is the same as the motor encoder density.

Encoder Scaling

This feature allows you to change the drive encoder output resolution in increments of one line per revolution up to the density of the encoder in the motor. If the Encoder Scaling parameter is set to a value higher than the motor encoder density, the drive encoder output density will equal that of the motor encoder.

Load Group

Inertia Ratio

Inertia Ratio specifies the load to rotor inertia ratio and has a range of 0.0 to 50.0. If the exact inertia is unknown, a conservative approximate value should be used. If you enter an inertia value higher than the actual inertia, the resultant motor response will tend to be more oscillatory.
Setting Up Parameters

Friction

This parameter is characterized in terms of the rate of friction increase per 100 motor RPM. If estimated, always use a conservative (less than or equal to actual) estimate. If the friction is completely unknown, a value of zero should be used. A typical value used here is less than one percent.

Tuning Group

Response

The Response adjusts the velocity loop bandwidth with a range of 1 to 500 Hz. In general, it affects how quickly the drive will respond to commands, load disturbances and velocity corrections. A good value to start with (the default) is 50 Hz. The affect of response is greatly affected by High Performance Gains. With High Performance Gains the maximum value recommended is 100 Hz.

Position Error Integral Group

Position Error Integral Check Box

The Position Error Integral is a control term, which can be used to compensate for the continuous torque required to hold a vertical load against gravity. It is also useful in Pulse mode applications to minimize following error.

Time Constant

The user configures this control term using the “Position Error Integral Time Constant” parameter. This parameter determines how quickly the drive will correct for in-position following error. The time constant is in milliseconds and defines how long it will take to decrease the following error to 37 percent of the original value. In certain circumstances the value actually used by the drive will be greater than the value specified here.

\[
\text{Min. Time Constant} = \frac{1000}{\text{Response}}
\]

For example, with “Response” set to 50, the minimum time constant value is 1000/50 = 20 msec.

Enable High Performance Gains Check Box

Enabling the High Performance Gains increases closed loop stiffness which can be beneficial in open loop velocity applications and Pulse mode. When enabled, they make the system less forgiving in applications where the actual inertia varies or the coupling between the motor and the load has excessive windup or backlash.
Note

When using an external position controller in Velocity mode, High Performance Gains should not be enabled.

Enable Feedforwards Check Box

When feedforwards are enabled, the accuracy of the Inertia and Friction are very important. If the Inertia is larger than the actual inertia, the result could be a significant overshoot during ramping. If the Inertia is smaller than the actual inertia, following error during ramping will be reduced but not eliminated. If the Friction is greater than the actual friction, it may result in velocity error or instability. If the Friction is less than the actual friction, velocity error will be reduced by not eliminated.

Analog Tab (Detailed Setup view only)

This tab displays the setup and feedback data for the Analog Input and the two diagnostic Analog Outputs.

![Figure 118: Analog Tab](image)

Figure 118: Analog Tab
Setting Up Parameters

Analog Inputs Group

Bandwidth
This sets the low-pass filter cut off frequency applied to the analog command input. Signals exceeding this frequency will be filtered at a rate 20 db. per decade.

Analog Full Scale
This parameter specifies the voltage required to command Full Scale Velocity or Full Scale Torque. It is used in Velocity Analog and Torque Analog operating modes.

Analog Zero Offset
This parameter is used to null any voltage present at the drive when a zero velocity or torque command is provided by a controller. The amount of offset can be measured by the Analog Input parameter when a zero velocity or torque command is supplied.

Analog Input
The analog voltage signal that is received on pins 14 and 15 of the Command Connector and is used to generate the Analog Velocity Command or the Analog Torque Command depending on the Actual Operating Mode.
For example:

+10 VDC = Maximum motor CW velocity or maximum CW torque.
-10 VDC = Maximum motor CCW velocity or maximum CCW torque.

Analog Outputs Group

Source
Select the signal that you wish to use as the source for Analog Output Channel #1 and Channel #2. There are five options: Velocity Feedback, Velocity Command, Torque Feedback, Torque Command and Following Error. The scaling and offset are affected by the source parameter selected. The units of the scaling and offset are adjusted according to the source parameter.

Offset and Scale
Each analog diagnostic output channel includes a programmable Analog Output Offset and an Analog Output Scale. These features allows you to “zoom in” to a desired range effectively increasing the resolution. The units for both of these parameters is dependent upon the Analog Output Source selection.
Feedback

This is a display of the real time status of the two analog outputs in volts. It is only available when you are online.
I/O Status Tab

This tab displays the status of the input and output functions in real time and is only available when you are online with a drive. This tab is divided into two windows, the "Inputs" window and the "Outputs" window.

![Figure 119: I/O Status Tab](image)

Inputs Group

Inputs Lines Window

This feature shows the various input lines and whether they are active. The line is active if the circle next to the line is green or lit-up.

Active State

The active state is shown for each input line.

Forced

The forced state is shown for each input line.
Forced On and Forced Off

You can force an input line to a level by using the "Forced On" and "Forced Off" check boxes. When you force an input line “On” or “Off”, all the functions assigned to that line will be affected.

Note

The forced state of input and output lines are not saved to NVM and will be lost when the drive is powered down.

Sort By Function/Line Button

Click on this button to change how the "Inputs" window is sorted (i.e., by functions or lines). The window can be sorted by either function or line. The functions and lines are arranged in a hierarchy. If the window is sorted by lines, then each line is displayed and any functions assigned to a particular line are grouped below the line.

Expand/Collapse Button

This button expands or collapses the hierarchy of the "Inputs" window. An expanded view shows the relationship between functions and lines. A collapsed view shows only lines or functions.

Figure 120: Collapsed and Expanded Views

If the function or line is currently active, the "LED" to the left of the function or line name will be green.
Setting Up Parameters

Note

When a function or line is active, the state of the "LED" associated with the function or line is dependent on how the "Always Active", "Forced On or Off" and "Active Off" controls are used.

Outputs Group

Outputs Lines Window

This feature shows the various output lines and whether they are active. The line is active if the circle next to the line is green or lit-up.

Active State

The active state is displayed for each output line.

Forced

The forced state is displayed for each output line.

Forced On and Forced Off

You can force an output line to a level by using the "Forced On" and "Forced Off" check boxes. When you force an output line "On" or "Off", the output functions are not affected.

Note

The forced state of input and output lines are not saved to NVM and will be lost when the drive is powered down.

Sort By Function/Line Button

Click on this button to change how the "Outputs" window is sorted (i.e., by functions or lines). Each window can be sorted by either function or line. The functions and lines are arranged in a hierarchy. If the window is sorted by lines, then each line is displayed and any functions assigned to a particular line are grouped below the line.

Expand/Collapse Button

This button expands or collapses the hierarchy of the "Outputs" window. An expanded view shows the relationship between functions and lines. A collapsed view shows only lines or functions.
Figure 121: Collapsed and Expanded Views

If the function or line is currently active, the "LED" to the left of the function or line name will be green.

Note

When a function or line is active, the state of the "LED" associated with the function or line is dependent on how the "Always Active", "Forced On or Off" and "Active Off" controls are used.
Setting Up Parameters

Status Tab

This tab displays the drive status in real time and is only available when you are on-line with a drive. The information in this tab is divided into six categories: Position, Velocity, Torque, Drive Status, I.D. and Drive Run Time.

![Figure 122: Status Tab](image)

Note

The information in this tab is for diagnostics purposes only and cannot be changed from within this tab.

Position Group

Pulse Position Input

This parameter returns the total number of actual pulses received on the pulse input hardware. This value is active in all operating modes.

Position Command

This is set to zero when the Absolute Position Valid output function is activated.
Following Error

The Following Error is the difference between the Position Command and the Position Feedback. It is positive when the Position Command is greater than the Position Feedback.

Encoder Feedback

The motor position in encoder counts since power up when the value was set to zero. This is a signed 32 bit value. This parameter can be preloaded using the serial interface.

Position Feedback

This parameter is the motor position since power-up. This value is automatically reset to zero at power-up.

Velocity Group

Preset Command

Preset Velocity command based on the velocity preset selected.

Analog Command

Analog command voltage currently being applied to the analog command input on the command connector.

Velocity Command

The Velocity Command is the actual command received by the velocity loop.

Velocity Feedback

This parameter is the actual feedback motor velocity in RPMs.

Torque Group

Torque Command

This parameter returns the torque command value before it is limited. The torque command may be limited by either the Torque Limit (if the Torque Limit Enable input function is active) or current foldback.
Setting Up Parameters

Actual Command

Displays the Torque command after all limiting. This command is used by the current loop to generate Motor Torque.

Drive Status Group

Foldback RMS

This parameter accurately models the RMS loading of the drive and motor. When it reaches 100 percent, current foldback will be activated.

Heatsink Temperature

This parameter displays the temperature of the Drive Module heatsink in degrees Fahrenheit. This parameter models the thermal utilization of the heatsink by the power stage. It determines the amount of thermal capacity available for the Regen Shunt Resistor. A display of 10 percent heatsink capacity remaining for use by the shunt resistor. When this value reaches 100 percent or higher, no capacity is left for the shunt resistor and a shunt resistor and a shunt fault will occur as soon as the shunt is activated.

Segment Display

Character currently being displayed by the status display on the front of the drive.

Actual Operating Mode

This parameter returns the actual (or current) operating mode or state of the drive. This is determined by the Operating Mode Default, Alternate Operating Mode, Input Functions which override the operating mode, fault conditions, function modules or disabling the drive.

Bus Voltage

Displays the actual measured voltage on the DC power bus.

ID Group (Detailed Setup view only)

Firmware Revision

Displays the revision of the firmware in the drive you are currently online with.
Serial Number

Displays the serial number of the drive with which you are currently online.

Drive Run Time Group (Detailed Setup view only)

Total Power Up Time

Total amount of time displayed in hours the drive has been powered-up since leaving the factory.

Power Up Count

Number of times the drive has been powered-up since leaving the factory.

Power Up Time

Amount of time displayed in hours the drive has been powered-up since last power up.

View Active Faults Button

Pushing this button displays the Active Drive Faults dialog box. From this dialog box you can reset any resettable active fault by clicking the Reset Faults button.

Figure 123: Active Drive Faults Dialog Box
Fault Log Group (EZ Setup view only)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power up</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fault Log Window

This window displays the last ten drive faults with time stamps. The first fault is the most recent fault. The information in this window is read only and cannot be edited or cleared.

Power up

This feature indicates during which power-up that the fault occurred.

Time (days hrs:min)

This feature indicates the time into the power-up that the fault occurred. The time is displayed in days, hours and minutes.)
History Tab (Detailed Setup view only)

This tab displays a complete fault history including a "Fault Log" window and a "Fault Count" window.

![History Tab](image)

Note

The "Fault Log" and "Fault Counts" cannot be cleared.

Fault Log Group

Fault Log Window

This window displays the last ten drive faults with time stamps. The first fault is the most recent fault. The information in this window is read only and cannot be edited or cleared.

Power up

This feature indicates during which power-up that the fault occurred.

Time (days hrs:min)

This feature indicates the time into the power-up that the fault occurred. The time is displayed in days, hours and minutes).
Fault Counts Group

Fault Counts Window

The "Fault Counts" window displays all the faults that can occur and the number of times those faults happened since the drive was originally powered-up. The information in this window cannot be edited or cleared.

of Occurrences

The "# of Occurrences" column displays the number of times each fault has occurred since the drive was originally powered up.
Advanced Tab

This tab is reserved for very infrequently used parameters that sometimes need to be adjusted to solve certain application problems. This tab is not normally visible and it is only rarely necessary. If any parameter in this tab is not at default, then it will automatically be enabled when starting PowerTools FM.

All the setups here are effective for all modes used and for both the (Main) Default Operating Mode and the Alternate Operating Mode.

![Advanced Tab View](image)

Figure 126: Advanced Tab View

Bus Voltage

Low DC Bus Enable

This parameter’s default setting is enabled. When enabled, the drive will detect a low DC bus at 60 VDC and will log a Low DC Bus Fault if a power down is not completed after the low DC bus is detected. Setting this to disabled will disable the Low DC Bus Voltage Fault. This will allow the drive to operate at a DC bus voltage below 60 VDC as long as the logic power is supplied by the A.P.S. (Alternate Power Supply).
Advanced Settings

Encoder State Fault Enable

This parameter’s default setting is enabled. When enabled, the drive will detect encoder state faults. Refer to Fault Codes in the Diagnostic and Troubleshooting section of this manual. The drive will not detect Encoder State faults when the fault is disabled. Disabling encoder faults is necessary for some types of program able encoders where the state transitions are not always deterministic.
Tuning Procedures

Overview

The drive uses closed loop controllers to control the position and velocity of the attached motor. These position and velocity controllers and the associated tuning parameters are in effect when the drive is in velocity or pulse mode and have no effect when the drive is in Torque mode.

Classic closed loop controllers are tuned using proportional, integral and derivative (PID) gains which require skilled “tweaking” to optimize. The drive uses a revolutionary tuning approach utilizing state-space algorithms. Using this method a drive can control the motor more accurately and with more robustness than the older PID algorithms.

The drive’s default settings are designed to work in applications with up to a 10:1 load to motor inertia mismatch. Most applications can operate with this default setting.

Some applications may have performance requirements which are not attainable with the factory settings. For these applications a set of measurable parameters can be specified which will set up the internal control functions to optimize the drive performance. The parameters include Inertia Ratio, Friction, Response and Line Voltage. All the values needed for optimization are “real world” values that can be determined by calculation or some method of dynamic measurement.

PID vs. State-Space

The power of the state-space control algorithm is that there is no guessing and no “fine tuning” as needed with PID methods. PID methods work well in controlled situations but tend to be difficult to setup in applications where all the effects of the system are not compensated for in the PID loop. The results are that the system response is compromised to avoid instability.

The drive state-space control algorithm uses a number of internally calculated gains that represent the wide variety of effects present in a servo system. This method gives a more accurate representation of the system and maximizes the performance by minimizing the compromises.

You need only to setup the system and enter three parameters to describe the load and the application needs. Once the entries are made the tuning is complete - no guessing and no “tweaking”. The drive uses these entries plus motor and amplifier information to set up the internal digital gain values. These values are used in the control loops to accurately set up a stable, repeatable and highly responsive system.
Tuning Procedure

Once the initial setup has been completed, you can run the system to determine if the level of tuning is adequate for the application. There are basically four levels of tuning for a drive:

- No Tuning
- Basic Level
- Intermediate Level
- Fully Optimized Level

Each level is slightly more involved than the previous one requiring you to enter more information. If your system needs optimization, we recommend that you start with the Basic Level, then determine if further tuning is needed based on axis performance.

The setup procedures explained here assume that you are using Control Techniques’ PowerTools software or an FM-P.

Initial settings

Pulse Mode (with or without a position controller)

Velocity Mode (without a position controller)

If you are using the drive in Pulse mode with or without a position controller or as an open loop velocity drive only, set the drive tuning parameters as follows:

- Inertia Ratio = 0
- Friction = 0
- Response = 50
- High Performance Gains = Enabled
- Feedforwards = Disabled

Velocity Mode (with a position controller)

If you are using the drive in Velocity mode with a position controller, set the drive tuning parameters as follows:

- Inertia Ratio = 0
- Friction = 0
- Response = 100
- High Performance Gains = Enabled
- Feedforwards = Disabled

Torque Mode (with or without a closed loop position controller)

If you are using the drive in Torque mode, without Stop inputs or Travel Limit inputs, no tuning is required.

If you are operating in Torque mode and you are using the Stop or Travel Limit inputs, you must setup the drive as if it were running in Velocity mode without a position controller. This is because the drive will automatically shift into Velocity mode when either of these functions is activated and will use the gain setups when decelerating and holding position.
This unique feature offers an extra level of safety because the drive can override the position controller and bring the axis to a safe stop if the controller loses the ability to control the axis.

Tuning steps

If your Inertia Ratio is greater than 10 times the motor inertia go directly to the Intermediate Level tuning.

No Tuning

No tuning will be required in most applications where the load inertia is 10 times the motor inertia or less.

Basic Level

Adjust Response to obtain the best performance.

Intermediate Level

1. Calculate or estimate the load inertia. It is always better to estimate low.
2. Disable the drive.
3. Enter the inertia value calculated into the Inertia Ratio parameter.
4. Leave all other tuning parameters at the initial values.
5. Enable the drive and run the system.
6. Adjust Response to obtain the best performance.

Fully Optimized Level

1. Determine the actual system parameters.
2. Disable the drive.
3. Enter the parameters.
4. Enable the drive and run the system.
5. Adjust Response to obtain the best performance.

General Tuning Hints

The Response is normally the final adjustment when tuning. For best performance the Response should be lower with a higher inertia mismatch (>10:1) and higher with a lower inertia mismatch.
If your system has some torsional compliance, such as with a jaw type coupling with a rubber spider, or if there is a long drive shaft, the Response should be decreased. The highest recommended Response with High Performance Gains enabled is 100 Hz.

Feedforwards can be enabled if the performance requirements are very demanding. However when using them, make sure the Inertia Ratio and Friction values are an accurate representation of the load. Otherwise, the system performance will actually be degraded or stability will suffer. Enabling the Feedforward makes the system less tolerant of inertia or friction variations during operation.

Tuning Parameters

Inertia Ratio

Inertia Ratio specifies the load to motor inertia ratio and has a range of 0.0 to 50.0. A value of 1.0 specifies that load inertia equals the motor inertia (1:1 load to motor inertia). The drives can control up to a 10:1 inertia mismatch with the default Inertia Ratio value of 0.0. Inertial mismatches of over 50:1 are possible if response is reduced.

The Inertia Ratio value is used to set the internal gains in the velocity and position loops, including feedforward compensation if enabled.

To calculate the Inertia Ratio value, divide the load inertia reflected to the motor by the motor inertia of the motor. Include the motor brake as a load where applicable. The resulting value should be entered as the Inertia Ratio parameter.

\[IR = \frac{RLI}{MI} \]

Where:

- \(IR \) = Inertia Ratio
- \(RLI \) = Reflected Load Inertia (lb-in-sec\(^2\))
- \(MI \) = Motor Inertia (lb-in-sec\(^2\))

If the exact inertia is unknown, a conservative approximate value should be used. If you enter an inertia value higher than the actual inertia, the resultant motor response will tend to be more oscillatory.

If you enter an inertia value lower than the actual inertia, but is between 10 and 90 percent of the actual, the drive will tend to be more sluggish than optimum but will usually operate satisfactorily. If the value you enter is less than 10 percent of the actual inertia, the drive will have a low frequency oscillation at speed.
Tuning Procedures

Friction

This parameter is characterized in terms of the rate of friction increase per 100 motor RPM. The range is 0.00 to 100.00 in units of percent continuous torque of the specified motor/drive combination. The Friction value can either be estimated or measured.

If estimated, always use a conservative (less than or equal to actual) estimate. If the friction is completely unknown, a value of zero should be used. A typical value used here would be less than one percent.

If the value entered is higher than the actual, system oscillation is likely. If the value entered is lower than the actual a more sluggish response is likely but generally results in good operation.

Response

The Response adjusts the velocity loop bandwidth with a range of 1 to 500 Hz. In general, it affects how quickly the drive will respond to commands, load disturbances and velocity corrections. The effect of Response is greatly influenced by the status of the High Performance Gains.

With High Performance Gains disabled, the actual command bandwidth of the drive system will be equal to the Response value. In this case the load disturbance correction bandwidth is fixed at approximately 5 Hz. Increasing the Response value will reduce the drive’s response time to velocity command changes but will not affect the response to load or speed disturbances.

When High Performance Gains are enabled, the actual response bandwidth is three to four times the Response value. In this case, it affects both the velocity command and the load disturbance correction bandwidth. Increasing the Response when the High Performance Gains are enabled will increase loop stiffness. With High Performance gains enabled, the maximum Response level recommended is approximately 100 Hz.

If the Inertia Ratio and Friction values are exactly correct and the High Performance Gains are enabled, changing the Response will not affect the damping (percent of overshoot and number of ringout cycles) to velocity command changes or load disturbance corrections but will affect their cycle frequency. The response level should be decreased as the load to motor inertia ratio increases or if High Performance Gains are enabled.

High Performance Gains

Enabling High Performance Gains fundamentally affects the closed loop operation of the drive and greatly modifies the effect of the Response parameter. High Performance Gains are most beneficial when the Inertia Ratio and Friction parameters are accurate.

High Performance Gains, when enabled, make the system less forgiving in applications where the actual inertia varies or the coupling between the motor and the load has excessive windup or backlash.
Note
When using an external position controller, some applications will benefit in rare instances by disabling High Performance Gains.

Position Error Integral
Position Error Integral is a control term that is effective only in Pulse mode which serves to minimize following error especially at constant speed. This minimizes phase error between master and slave when running in a line shaft or gearing application. It also helps maintain accurate command execution during steady state or low frequency torque disturbances (typically less than 10 Hz) or when holding a non-counterbalanced vertical load in position.

The adjustment parameter is Position Error Integral Time Constant which is available in the Motor and Tuning Tabs of PowerTools. This parameter determines how quickly the drive will attempt to eliminate the following error. The time constant is in milliseconds and defines how long it will take to decrease the following error by 63%. (3 time constants will reduce the following error by 96%). The range for this parameter is 5 to 500 milliseconds. In certain circumstances the value actually used by the drive will be greater than the value specified in the Power Tools because the minimum allowed time constant value is a function of the ‘Response’ parameter. The formula is Min. Time Constant = 1000/Response. For example with ‘Response’ set to 50, the minimum time constant value is 1000/50 = 20 msec. A higher time constant value will minimize instability with more compliant loads such as long drive shafts, or spring loads. A lower time constant setting will increase the response and will stiffen the system.

Feedforwards
Feedforward gains are essentially open loop gains that generate torque commands based on the commanded velocity, accel/decel and the known load parameters (Inertia Ratio and Friction). Using the feedforwards reduces velocity error during steady state and reduces overshoot during ramping. This is because the Feedforwards do not wait for error to build up to generate current commands.

Feedforwards should be disabled unless the absolute maximum performance is required from the system. Using them reduces the forgiveness of the servo loop and can create instability if the actual inertia and/or friction of the machine varies greatly during operation or if the Inertia Ratio or Friction parameters are not correct.

The internal feedforward velocity and acceleration gains are calculated by using the Inertia Ratio and Friction parameters. The feedforward acceleration gain is calculated from the Inertia Ratio parameter and the feedforward velocity gain is calculated from the Friction parameter.

When Feedforwards are enabled, the accuracy of the Inertia Ratio and Friction parameters is very important. If the Inertia Ratio parameter is larger than the actual inertia, the result would be a significant velocity overshoot during ramping. If the Inertia parameter is smaller than the actual inertia, velocity error during ramping will be reduced but not eliminated. If the Friction
parameter is greater than the actual friction, it may result in velocity error or instability. If the Friction parameter is less than the actual friction, velocity error will be reduced by not eliminated.

Feedforwards can be enabled in any operating mode, however, there are certain modes in which they do not function. These modes are described in table below.

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Feedforward Parameters Active</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accel FF</td>
</tr>
<tr>
<td>Analog Velocity</td>
<td>No</td>
</tr>
<tr>
<td>Preset Velocity</td>
<td>Yes</td>
</tr>
<tr>
<td>Pulse/Position</td>
<td>No</td>
</tr>
<tr>
<td>Summation</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* EN revision B6 or later.

Low Pass Filter Enable and Frequency

The drive provides a low pass filter which may be used to reduce machine resonance due to mechanical coupling or other flexible load components. The low pass filter filters the torque command generated by the velocity loop. It is not active in Torque mode.

The low pass filter’s frequency must be at least 2.5 times greater than the actual velocity loop bandwidth. If there is no noticeable mechanical resonance effecting the system, the system is better off without the low pass filter. If the system has a mechanical resonance effecting the performance, the low pass filter can diminish the effects of the resonance and allow the tuning response parameter to be increased.

The low pass filter may improve system performance when there is an inertia mismatch between the load and the motor inertia causing compliance in the effective load shaft. For example, if an EN-214/MG-490 drive motor combination is driving a 16-inch long ne-inch steel shaft with a 40:1 inertia mismatch, the highest the tuning can be set to is 1 hertz. If the low pass filter is enabled at a frequency of 70 hertz, the system’s tuning response may be set to 15 hertz.
Determining Tuning Parameter Values

For optimum performance you will need to enter the actual system parameters into the drive. This section discusses the methods which will most accurately determine those parameters.

Note
If you have an application which exerts a constant unidirectional loading throughout the travel such as in a vertical axis, the inertia tests must be performed in both directions to cancel out the unidirectional loading effect.

Initial Test Settings

When running the tests outlined in this section, the motor and drive must be operational so you will need to enter starting values.

If your application has less than a 10:1 inertia mismatch, the default parameter settings will be acceptable. If the inertial mismatch is greater than 10:1, use the following table for initial parameter settings.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friction</td>
<td>0.00</td>
</tr>
<tr>
<td>Inertia Ratio</td>
<td>1/3 to 1/2 Actual</td>
</tr>
<tr>
<td>Response</td>
<td>500/Inertia Ratio</td>
</tr>
<tr>
<td>High Performance Gains</td>
<td>Disabled</td>
</tr>
<tr>
<td>Feedforwards</td>
<td>Disabled</td>
</tr>
<tr>
<td>Line voltage</td>
<td>Actual Applied</td>
</tr>
</tbody>
</table>

Determining Friction

This parameter represents friction that increases proportionally as motor velocity increases. The viscous friction of your system can be determined by reading the percent of continuous torque required to operate the loaded motor at two different speeds.

Consider the following before determining the Friction:

- The most consistent readings can usually be obtained at motor speeds higher than 500 RPM but lower test speeds can be used if necessary.
- If your application has travel limits, it may be helpful to use an external position controller to prevent the axis from exceeding the machine limits. Set up a trapezoidal profile as shown.
- In the procedure below, the Torque Command and Velocity Feedback parameters can be measured using the drive’s analog outputs, PowerTools software.
- With vertical loads the test readings must be taken while traveling in the same direction.
Tuning Procedures

- An oscilloscope may be needed for systems with limited travel moves to measure the rapidly changing torque and velocity signals.
- If your system’s friction changes with operating temperature, perform this procedure at normal operating temperature.

Procedure for Determining Friction:

1. Run the motor at the low test speed (at least 500 RPM).
2. While at speed, note the Torque Command Actual value (T_{CL}).

Note

If the friction loading of your system varies when operating at constant speed, due to a load or spring load that changes as the motor rotates, use the lowest value measured.

3. Repeat Step 1 using a velocity at least two times the low speed.
4. While at speed, note the Torque Command Actual value (T_{CH}).
5. Use the following formula to calculate the friction:

\[
FV = (100) \frac{(T_{CH} - T_{CL})}{RPM_H - RPM_L}
\]

Where:

- \(T_{CH} \) = Torque Command Limited value at higher speed
- \(T_{CL} \) = Torque Command Limited at lower speed
- \(RPM_H \) = Higher RPM (velocity)
- \(RPM_L \) = Lower RPM (velocity)
- \(FV \) = Friction value

The figure below shows the relationship of Torque Command to the Velocity Feedback. There is increased torque during the Accel ramp (Ta), constant torque (Tc) during the constant velocity portion of the ramp and decreased torque (Td) during the decel ramp.

Figure 127: Trapezoidal Velocity Waveform with Torque Waveform
Determining Inertia Ratio

Actual system Inertia Ratio is determined by accelerating and decelerating the load with a known ramp while measuring the torque required.

Consider the following before determining the inertia:

- If your application allows a great deal of motor motion without interference, it is recommended that you use a Preset Velocity to produce accurate acceleration ramps.

- If your application has a very limited range of motion, it is recommended that you use a position controller to produce the acceleration ramps and to prevent exceeding the axis range of motion.

- The accel and decel ramp should be aggressive enough to require at least 20 percent of continuous motor torque. The higher the torque used during the ramp, the more accurate the final result will be.

- With ramps that take less than 1/2 second to accelerate, read the Diagnostic Analog Outputs with an oscilloscope to measure the Torque Feedback.

- With ramps that take 1/2 second or longer to accelerate, read the Torque Command parameter on the Motor tab of PowerTools or with the Watch Window.

- To best determine the inertia, use both acceleration and deceleration torque values. The difference allows you to drop the constant friction out of the final calculation.

- If your application exerts a constant “unidirectional loading” throughout the travel such as in a vertical axis, the inertia test profiles must be performed in both directions to cancel out the unidirectional loading effect.

- The Torque Command Limited and Velocity Feedback parameters can be measured using the drive’s Analog Outputs, or PowerTools software.

An oscilloscope will be needed for systems with limited travel moves and rapidly changing signals of torque and velocity.

Inertia Measurement Procedure:

Note

The test profile will need to be run a number of times in order to get a good sample of data.

1. Enable the drives and run the test profiles.

2. Note the Torque Command Limited value during acceleration and deceleration.

3. Use the appropriate formula below to calculate the inertia.
Tuning Procedures

For horizontal loads or counterbalanced vertical loads use the following formula:

\[IR = \frac{(R \cdot Vm (Ta + Td))}{2000} - 1 \]

Where:
- IR = Inertia Ratio
- R = ramp in ms/kRPM
- Ta = (unsigned) percent continuous torque required during acceleration ramping (0 - 300)
- Td = (unsigned) percent continuous torque required during deceleration ramping (0 - 300)
- Vm = motor constant value from Table 18 below

For un-counter balanced vertical loads use the following formula:

\[IR = \frac{(R \cdot Vm (Tau + Tdu + Tad + Tdd))}{4000} - 1 \]

Where:
- IR = Inertia Ratio
- R = ramp in ms/kRPM
- Vm = motor constant value from the table below
- Tau = (unsigned) percent continuous torque required during acceleration ramping while moving up (against the constant force)
- Tdu = (unsigned) percent continuous torque required during deceleration ramping while moving up (against the constant force)
- Tad = (unsigned) percent continuous torque required during acceleration ramping while moving down (aided by the constant force)
- Tdd = (unsigned) percent continuous torque required during deceleration ramping while moving down (aided by the constant force)

Ramp Units Conversion

If you are using an external position controller to generate motion you may need to convert the ramp units as desired below.

Many position controllers define acceleration in units per sec\(^2\). The formulas above use ms/ kRPM. Make sure you make this conversion when entering the information into the formula.

Conversion Formula:

\[MPK = \frac{10^6}{(RPSS \cdot 60)} \]

Where:
MPK = accel ramp in ms/kRPM
RPSS = accel ramp in revolutions per second²

<table>
<thead>
<tr>
<th>Motor</th>
<th>Drive</th>
<th>Vm</th>
<th>Percent Continuous/volt Scaled Torque Command Output (default)</th>
<th>RPM /volt Scaled Velocity Command Output (default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH-316</td>
<td>MD-404</td>
<td>3.07</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-340</td>
<td></td>
<td>3.07</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-455</td>
<td></td>
<td>1.74</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-455</td>
<td>MD-407</td>
<td>1.95</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-590</td>
<td></td>
<td>1.51</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-455</td>
<td>MD-410</td>
<td>1.95</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-490</td>
<td></td>
<td>1.51</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-6120</td>
<td></td>
<td>1.07</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-6120</td>
<td>MD-420</td>
<td>1.07</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-6200</td>
<td></td>
<td>1.19</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-6300</td>
<td></td>
<td>1.04</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-6200</td>
<td>MD-434</td>
<td>1.19</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-6300</td>
<td></td>
<td>1.04</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-8500</td>
<td></td>
<td>0.65</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>MH-8750</td>
<td></td>
<td>0.54</td>
<td>30</td>
<td>600</td>
</tr>
</tbody>
</table>
Status, Diagnostics and Troubleshooting

Power Module Status Indicators

The Power Module status indicators on the front of the Power Module shows system and Power Module status. When the condition is met the indicators will be illuminated.

<table>
<thead>
<tr>
<th>Status Function</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Power</td>
<td>The +24VDC Logic Power is correctly supplied to the Power Module.</td>
</tr>
</tbody>
</table>
| System Ready | Everything in the Power Module is properly connected:
 • +24VDC Logic Power
 • AC Input has all three phases
 • No Power Module Faults and soft start is completed.
 The System Ready indicator will blink in the condition that one of the AC input phases is lost. The system will continue to operate in this condition. |
| Shunt Active | The shunt transistor is on. The shunt transistor will turn on under two conditions;
 • The Bus voltage exceeds 830 VDC
 • The External shunt control input is active. |

Fault Function

<table>
<thead>
<tr>
<th>Fault Function</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shunt Fault</td>
<td>Shunt resistor is shorted or wired incorrectly,</td>
</tr>
<tr>
<td>Over Temp</td>
<td>The Power Module RMS power is exceeded creating an over temperature condition in the Power Module or ambient temperature is higher than 40°C.</td>
</tr>
<tr>
<td>High VAC Input</td>
<td>The AC Input voltage exceeds 528 VAC.</td>
</tr>
</tbody>
</table>

Drive Module Diagnostic Display

The diagnostic display on the front of the Drive Module shows Drive Module status and fault codes. When a fault condition occurs, the Drive Module will display the fault code, overriding the status code. The decimal point is “On” when the Drive Module is enabled and the Stop input is not active. This indicates that the Drive Module is ready to run and will respond to motion commands. Commands will not cause motion unless the decimal point is “On”.

<table>
<thead>
<tr>
<th>Display Indication</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Brake Engaged (Output "Off")](image) | Brake Engaged (Output "Off") | Motor brake is mechanically engaged. This character will only appear if the Brake output function is assigned to an output line.
See Brake Operation section for detailed description of Brake Output function. |
Fault Codes

A number of diagnostic and fault detection circuits are incorporated to protect the Drive Module. Some faults, like High DC bus and Motor Over Temperature, can be reset with the Reset button on the front of the Drive Module or the Reset input function. Other faults, such as encoder faults, can only be reset by cycling logic power “Off” (wait until the status display turns “Off”), then power “On”.

The drive accurately tracks motor position during fault conditions. For example, if there is a "Low DC Bus" fault where the power stage is disabled, the drive will continue to track the motor’s position provided the logic power is not interrupted.
Status, Diagnostics and Troubleshooting

The +/- Travel Limit faults are automatically cleared when the fault condition is removed. The table below lists all the fault codes in priority order from highest to lowest. This means that if two faults are active, only the higher priority fault will be displayed.

<table>
<thead>
<tr>
<th>Display</th>
<th>Fault</th>
<th>Action to Reset</th>
<th>Bridge Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power Up Test</td>
<td>Cycle Logic Power</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>NVM Invalid</td>
<td>Reset Button or Input Line</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Drive Overtemp</td>
<td>Allow Drive to cool down, Cycle Logic Power</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Invalid Configuration</td>
<td>Reset Button or Input Line</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Power Module</td>
<td>Cycle Logic Power</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>High DC Bus</td>
<td>Reset Button or Input Line</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Low DC Bus</td>
<td>Reset Button or Input Line</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Encoder State</td>
<td>Cycle Logic Power</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Encoder Hardware</td>
<td>Cycle Logic Power</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Motor Overtemp</td>
<td>Allow Motor to cool down, Reset Button or Input Line</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Fault Descriptions

Power Up Test

This fault indicates that the power-up self-test has failed. This fault cannot be reset with the reset command or reset button.

NVM Invalid

At power-up the drive tests the integrity of the non-volatile memory. This fault is generated if the contents of the non-volatile memory are invalid.

Invalid Configuration

A function module was attached to the drive on its previous power-up. To clear, press and hold the Reset button for 10 seconds.

Drive Overtemp

 Indicates the drive IGBT temperature has reached its limit.

Power Module

This fault indicates either IGBT module failure or over current/short circuit condition as a result of phase to phase or phase to ground short in the motor or cable.
Status, Diagnostics and Troubleshooting

High DC Bus

This fault will occur whenever the voltage on the DC bus exceeds the High DC Bus threshold. The most likely cause of this fault would be an open external shunt fuse, a high AC line condition or an application that requires an external shunt (e.g., a large load with rapid deceleration).

<table>
<thead>
<tr>
<th></th>
<th>High DC Bus Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS</td>
<td>880 VDC</td>
</tr>
</tbody>
</table>

Low DC Bus

This fault will occur whenever the voltage on the DC bus drops below the Low DC Bus threshold. The most likely cause of this fault is a reduction (or loss) of AC power. A 50 ms debounce time is used with this fault to avoid faults caused by intermittent power disruption. With and Epsilon drive, the low DC bus monitoring can be disabled with PowerTools software in the Advanced tab.

<table>
<thead>
<tr>
<th></th>
<th>Low DC Bus Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS</td>
<td>60 VDC</td>
</tr>
</tbody>
</table>

Encoder State

Certain encoder states and state transitions are invalid and will cause the drive to report an encoder state fault. This is usually the result of noisy encoder feedback caused by poor shielding. For some types of custom motors it may be necessary to disable this fault. Refer to the Advanced Tab section of Setting Up Parameters for more information.

Encoder Hardware

If any pair of complementary encoder lines are in the same state, an encoder line fault is generated. The most likely cause is a missing or bad encoder connection.

Motor Overtemp

This fault is generated when the motor thermal switch is open due to motor over-temperature or incorrect wiring.

Overspeed

This fault occurs in one of two circumstances:
1. When the actual motor speed exceeds the Overspeed Velocity Limit parameter or 150% of motor maximum operating speed. This parameter can be accessed with PowerTools software.

2. If the combination of command pulse frequency and Pulse Ratio can generate a motor command speed in excess of the fixed limit of 13000 RPM, an Overspeed Fault will be activated. In Pulse mode operation and any Summation mode which uses Pulse mode, the input pulse command frequency is monitored and this calculation is made. For example, with a Pulse Ratio of 10 pulses per motor revolution, the first pulse received will cause an Overspeed fault even before there is any motor motion.

<table>
<thead>
<tr>
<th>Following Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>This fault is generated when the following error exceeds the following error limit (default following error limit is .2 revs). With PowerTools you can change the Following Error Limit value or disable in the Position tab. The Following Error Limit is functional in Pulse mode only.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Travel Limit +/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>This fault is caused when either the + or - Travel Limit input function is active.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All "On"</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is a normal condition during power up of the drive. It will last for less than 1 second. If this display persists, call Control Techniques for service advice. Normally, All "On" for less than one second during power-up. All segments dimly lit when power is "Off" is normal when an external signal is applied to the encoder inputs (motor or master) or serial port from an externally powered device. The signals applied to the inputs cannot exceed 5.5V level required to drive logic common or drive damage will occur.</td>
</tr>
</tbody>
</table>

Diagnostic Analog Output Test Points

The drive has two 8-bit real-time Analog Outputs which may be used for diagnostics, monitoring or control purposes. These outputs are referred to as Channel 1 and Channel 2. They can be accessed from the Command Connector on the drive or from the Diagnostics Analog Output Pins located on the front of the drive.

Each Channel provides a programmable Analog Output Source.

Analog Output Source options are:

- Velocity Command
- Velocity Feedback
Status, Diagnostics and Troubleshooting

- Torque Command (equates to Torque Command Actual parameter)
- Torque Feedback
- Following Error

Default Analog Output Source:

- Channel 1 = Velocity Feedback
- Channel 2 = Torque Command

<table>
<thead>
<tr>
<th>Channel</th>
<th>Output Source</th>
<th>Offset</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Velocity Feedback</td>
<td>0</td>
<td>600 RPM/volt</td>
</tr>
<tr>
<td>2</td>
<td>Torque Command</td>
<td>0</td>
<td>30 percent/volt for selected motor</td>
</tr>
</tbody>
</table>

Figure 128: Diagnostic Analog Output Test Points

The DGNE cable was designed to be used with either an oscilloscope or a meter. The wires are different lengths to avoid shorting to each other. However, if signals do get shorted to GND, the drive will not be damaged because the circuitry is protected.
Drive Faults

The Active Drive Faults dialog box is automatically displayed whenever a fault occurs. There are two options in this dialog box: Reset Faults and Ignore Faults.

Resetting Faults

Some drive faults are automatically reset when the fault condition is cleared. Other faults require drive power to be cycled or the drive to be “rebooted”. If you wish to continue working in the PowerTools FM software without resetting the fault, click the Ignore Fault button.
To reset faults that can be reset with the *Reset Faults* button, simply click the *Reset Faults* button in the Drive Faults Detected dialog box or push the Reset button on the front of the drive where the fault occurred.

Viewing Active Drive Faults

To view all active drive faults, select the View Faults command from the *Device* menu or by clicking on the View Faults icon on the toolbar. The dialog box displayed is the same as Active Drive Faults Detected dialog box described above.

Rebooting the Drive

To reboot the drive, cycle power or select the Reboot Drive command from the *Device* menu. This command reboots the drive attached to the active Configuration Window.

Watch Window

This feature allows you to customize a window to monitor drive parameters which you select from a complete list of drive parameters. From this window you can watch the parameters you selected in real time. This feature is only available when you are online with the drive.

Note

You cannot change the values of the parameters while they are being displayed in the Watch Window. The parameter in the setup screens will look like they have been changed when they actually have not. To update a parameter, delete it from the Watch Window selection.

Note

It is normal to have the Watch Window show up with the three motor parameters already selected if the motor parameters window has been accessed previously. If you do not need to view them, simply push the *Clear All* button and select the parameters you wish to view.

![Watch Window Table](image)

Figure 131: Watch Window

The Watch Window is accessed by selecting Watch Drive Parameters from the *Tools* menu or by clicking on the Watch Window icon on the toolbar.
The Watch Window will automatically appear as soon as you select a parameter from the Select Drive Parameters dialog box. After you have selected the parameters you wish to watch, click the Close button. The Select Drive Parameters dialog box will close and the Watch Window will remain open.

![Select Drive Parameters Dialog Box](image)

Figure 132: Select Drive Parameters Dialog Box

Group

This list box enables you to view the complete list of parameters or just a group of parameters you are interested in. The groups include: Analog In, Analog Out, Communication, Digital Inputs, Execution, Fault Counts, Fault Log, ID, Input Functions, Motor, Output Functions, Position, Setup, Status, Torque, Tuning, User Defined Motor, and Velocity.

Clear All Button

This button is used to clear all the parameter selections that were previously selected.

Save Selections Button

This button saves the parameter selections. This enables you to restore the same list of parameters for use in future online sessions.

Restore Selections Button

This button restores the parameter selections previously saved. This enables you to restore the list of parameters you created in a previous online session.

View Motor Parameters

When online with the drive this feature allows you to display a pre-defined Watch Window to monitor three motor parameters. These parameters are normally used when testing the setup of a User Defined Motor for commutation accuracy.
Status, Diagnostics and Troubleshooting

Figure 133: View Motor Parameters Window

The View Motor Parameters window is accessed by selecting View Motor Parameters from the Tools menu.

Error Messages

PowerTools will pop-up an error message box to alert you to any errors it encounters. These message boxes will describe the error and offer a possible solution.

The table below lists some common problems you might encounter when working with PowerTools software along with the error message displayed, the most likely cause and solution.

<table>
<thead>
<tr>
<th>Problem/Message</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-out while waiting for device response.</td>
<td>Loss of serial communications.</td>
<td>Check the serial connection to the device and try operation again.</td>
</tr>
<tr>
<td>The attempted operation has been cancelled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The attached device(s) do not have valid revisions, or do not have matching revisions.</td>
<td>Attempting to broadcast to drive without matching firmware revisions.</td>
<td>Program each drive individually.</td>
</tr>
<tr>
<td>Unable to communicate with device [Address X]</td>
<td>The device that you are attempting to communicate with is no longer available.</td>
<td>Check all connections and verify that you are using the correct baud rate then try again.</td>
</tr>
<tr>
<td>The specified drive type (name) does not match the actual drive type (name). Please make necessary corrections.</td>
<td>The drive type you selected in the “Drive Type” list box does not match the drive you are downloading to.</td>
<td>Change the drive type selected in the “Drive Type” list box to match the drive you are downloading to.</td>
</tr>
<tr>
<td>Non-Control Techniques device attached (address). When trying to program more than one drive, only EMC drives of the same type can be attached to the network.</td>
<td>This error is caused When you attempting to perform an upload or download to multiple drives and one or more of the drives are not the same type.</td>
<td>Disconnect the device(s) that has been specified and try the operation again or program each device individually.</td>
</tr>
<tr>
<td>You have changed a parameter which will not take affect until the drive has been rebooted. Before you reboot the drive, you will need to save your setup to NVM. Do you wish to save your setup to drive NVM now?</td>
<td>See message.</td>
<td>Yes/No.</td>
</tr>
<tr>
<td>(Operation Name) The attempted operation has been cancelled.</td>
<td>Communication error.</td>
<td>Retry operation. Check connection to drive.</td>
</tr>
<tr>
<td>Invalid entry. The entry exceeds the precision allowed by this field. The finest resolution this field accepts is (value).</td>
<td>Entered a value out of range.</td>
<td>Enter a value within the range of that field. The status bar displays information on the currently selected object or action.</td>
</tr>
<tr>
<td>The device was disconnected during the upload. The upload was not complete.</td>
<td>Connection to the device was lost (a time-out occurred).</td>
<td>Check the connection to the device and try again.</td>
</tr>
<tr>
<td>The device was disconnected during the download. The download was not complete.</td>
<td>Connection to the device was lost (a time-out occurred).</td>
<td>Check the connection to the device and try again.</td>
</tr>
<tr>
<td>Problem/Message</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>No device selected.</td>
<td>No device selected during flash upgrade.</td>
<td>Select device(s) from list box.</td>
</tr>
<tr>
<td>The drive at address is use.</td>
<td></td>
<td>Close any other windows that are using the same addresses and try again.</td>
</tr>
</tbody>
</table>
User Defined Motors

Drives can be configured to operate with brushless DC (synchronous permanent magnet) motors not manufactured by Control Techniques. This feature is very useful for users who are retrofitting drives on existing systems or who have special motor requirements.

Commutation Basics

To properly commutate the motor, the drive must know the electrical angle (the angle between the motor magnetic field and stator coils; R, S and T). At power-up, the drive determines the starting electrical angle from the U, V and W commutation tracks. After this is determined, the U, V and W commutation tracks are ignored and the commutation is entirely based on the A and B incremental channels. The number of U, V and W cycles must match the number of poles in the motor but they do not have to be aligned with the motor poles in any particular way.

The U, V and W tracks have a fairly coarse resolution, therefore, on power-up, the commutation accuracy is limited to ±30 electrical degrees from optimum. When the Z channel is seen by the drive, the commutation angle is gradually shifted to the optimum position as defined by the Motor Encoder Marker Angle parameter. This shift is accomplished in about one second whether the motor is rotating or not.

Tools Required:

- Oscilloscope dual trace 5 Mhz bandwidth minimum.
- AC/DC voltmeter, 20 VDC and 200 VAC minimum.
- Drill motor (reversible) or some means of spinning the motor.
- Coupling method between the drill motor and the test motor.
- 5 VDC power supply to power the motor encoder.
- Motor power cable (CMDS or CMMS).
- Motor feedback cable (CFCO).
- Terminal strip (18 position suggested) to conveniently connect the motor power and encoder wires during testing.
- Method to securely hold the motor during operation (a vise or large C-clamp).

Procedure

The steps required to assemble a servo system consisting of a drive, and a non-Control Techniques motor are listed below:
1. Determine if your motor is compatible with the drive by verifying its characteristics. There are a number of restrictions such as encoder line density and motor pole count that must be considered. Most of these parameters are commonly found on a motor data sheet and some may have to be determined by testing.

It is important that the encoder used have a repeatable Z channel angle with reference to one of the commutation channels. This is especially the case if you will be using the same encoder on several motors and you wish to use the same setup file on them all. Otherwise you will need to generate a motor file for each individual motor/encoder.

2. Design and assemble the cabling and interface circuitry required to connect the motor and drive. Motor and feedback cables must be properly shielded and grounded.

3. Determine the encoder alignment. In order to commutate a motor correctly the angular relationship of the encoder commutation tracks and the marker pulse with respect to the R, S and T windings in the stator must be known.

4. Enter the motor/encoder data into the MOTOR.DDF file. This data is then read by the PowerTools software when setting up the drive.

5. Test your system to verify that the servo system is working correctly.

Step 1: Motor Wiring

The first step is to wire the motor terminals to the drive. Control Techniques designates the motor terminals as R, S and T.

Use the following procedure to establish the R, S and T mapping:

1. Assume the motor terminals of the non-Control Techniques motor are designated A, B and C. If they are not marked, name the terminals randomly. The next steps will determine their working designations.

2. You can select any of the three motor terminals and call it R. In this procedure we will choose terminal A.

WARNING

The rotation of the motor will generate dangerous voltages and currents on the motor phase leads. Make sure the wires and connections are properly insulated.

3. Connect the scope to read VCA and VBA. VCA and VBA are measured by putting the probe ground clips on A and the scope probes on C and B.

4. Rotate the motor CCW (i.e., rotate the shaft counter-clockwise as you face the shaft end of the motor).
5. Look at the phase-to-phase voltages VCA and VBA. There are two possibilities. If VCA leads VBA, then assign B to S and C to T. If VBA leads VCA, then assign B to T and C to S. These relationships are summarized in the figure below.
Figure 135: Phase Plot Used to Determining Stator Wiring

Note

For the remainder of this procedure we will refer to the motor terminals using the Control Techniques designations R, S and T.

Step 2: Motor Feedback Wiring

This step describes how to wire the feedback signals to the drive. There are two parts to this step: electrical interfacing and logical interfacing.
Encoder Electrical Interfacing

Each of the encoder signals is received by a differential receiver to minimize the noise susceptibility and to increase frequency bandwidth. This requires two wires for each logical signal. (i.e., signal A requires channel A and A/, etc.).

For optimum performance these signals should be generated by an encoder with a line driver output. Encoders which supply only single ended output signals will require some interfacing circuitry.

Note
The maximum current available out of the drive encoder +5 volt supply connection is 250 mA.
Thermal Switch Interfacing

The drive provides a facility to monitor the motor thermal sensor and shut the drive down in the event of a motor overtemp condition. This must be connected properly in order to enable the protection. If your motor does not have a thermal sensor, the sensor input pin needs to be connected to GND (connect pin 9 to pin 18). The thermal sensor requirements are as follows:

- If a thermistor is used, it must be a PTC (positive temperature coefficient) or it must increase in resistance as the temperature increases. The cold resistance should be 500 ohms or less. A motor fault will occur when the thermistor resistance reaches approximately 1.0 kOhm.
- Switch Operation: open circuit on temperature rise
- Voltage rating min: 10 VDC
- Current capacity min: 1 mA

Encoder Logical Interfacing

The encoder is expected to provide six logical signals: A, B, Z, U, V and W. Each of these signals is received at the drive by a differential receiver circuit. For example, the A logical signal is received as channels A and /A.

Signals A and B provide incremental motor position in quadrature format. Z is a once per revolution marker pulse. U, V and W are commutation tracks.
There are two steps in interfacing the encoder signals:

1. Determine whether your encoder has all the required signals to operate with a drive. Some encoders, for example, do not provide a marker pulse or the marker pulse may not have a fixed phase relationship to the commutation tracks.

2. Determine the mapping from the motor encoder signals to the drive. To help with this second step we have provided a description of the required characteristics of the A, B, Z, U, V and W encoder signals.

The signal relationships of A, B, U, V and W required by the drive are shown in the phase plots below. For clarity the time scale against which A and B are plotted is different from that which U, V and W are plotted. Note that A leads B and U leads V and V leads W.

Plots like these are obtained by powering the encoder then rotating the motor while observing the signals on an oscilloscope. It is important to note which direction of motor rotation (CW or CCW) generates the phasing shown in the figures below.

- A leads B
- CCW = Encoder reference dir = 0
- CW = Encoder reference dir = 1

Figure 138: Phase Plot of A and B Encoder Channels

Figure 139: Phase Plot of U, V and W Encoder Signals with CCW Rotation

If the signal phasing in the figure above is obtained by rotating the motor -, the Motor Encoder Reference Motion is defined as - and the Motor Encoder Reference Motion parameter is set to 0. If the signal phasing in the figure above is obtained by rotating the motor +, then the Motor Encoder Reference Motion is defined as + and the Motor Encoder Reference Motion is set to 1.
Note

It is important that all the encoder phases match the phase plot in the figure above. (i.e., A leads B, U leads V and V leads W. No particular phase relationship is required between the A and B pair and the U, V, W signals.

Drive signal names are relatively standard. Your encoder signals may be named differently or they may have the same names but the signals may be functionally different. You must determine the proper encoder signal mapping to correctly wire your encoder to a drive.

CAUTION

Encoder signals are used for commutation. Incorrectly wired encoder signals can cause damage to the drive.

Step 3: Determine Encoder Alignment

In order for the drive to commutate with a motor correctly, it must know how the encoder commutation tracks and how the marker pulses are aligned with respect to the R, S and T windings in the stator. The drive does not require any particular alignment position but instead allows the alignment to be specified using the Motor Encoder U Angle and Motor Encoder Marker Angle parameters.

If the motor under test has a defined encoder alignment which is repeated on all similar motors, simply determine the proper angles then use the same settings on all similar motors.

If the motor under test does not have a specific encoder alignment, you should establish some standard mechanical alignment before determining and setting the encoder electrical angles. This will allow you to replace the motor with another one in the same alignment without going through this procedure each time.

Reading Encoder Alignment

The reference motion for this test can be either CW or CCW. We will first use CCW. An oscilloscope will be used to monitor the signals. This procedure must be performed with the motor disconnected from the drive with the exception of the encoder power supply.

CAUTION

Be careful when using the drive encoder power supply for testing a motor. Shorting the 5 V drives encoder power supply will blow an internal fuse which can only be replaced at the factory.
Before reading the motor signals, zero the V_{TS} oscilloscope channel on a horizontal graduation marker to allow more accurate readings.

Couple the drill motor to the motor shaft. While spinning the motor counter-clockwise, use an oscilloscope to examine the phase relationship between encoder channel U and positive peak of V_{TS} (the voltage at motor power terminal T with reference to S).

Use the figure below to determine the electrical angle at which the rising edge of U occurs. This is the Motor Encoder U Angle. Note that with a CCW reference rotation the positive peak of V_{TS} is at zero electrical degrees and the electrical angle decreases from left to right.
Where:

\[\text{EUA} = 90^\circ + \left(\frac{\text{tu} \cdot 180}{t1} \right) \]

Where:

- \(\text{EUA} \) = Motor Encoder “U” Angle

If EUA is >360° subtract 360°.

Next, use the oscilloscope to examine the phase relationship between Z and \(V_{TS} \). Use Figure 141 to determine the electrical angle at the rising edge Z. This is the Encoder Marker Electrical Angle.
User Defined Motors

\[EMA = 90^\circ + \left(\frac{tz \cdot 180}{t1} \right) \]

Where:
- \(EMA \) = Motor Encoder Marker Angle

If \(EMA \) is \(>360^\circ \) subtract \(360^\circ \).

Many encoders are designed so that the encoder marker pulse occurs a specified number of electrical degrees from the rising edge of \(U \). You could obtain this value from the encoder specification sheet however, to minimize errors in conversion, you should make this measurement.

If you cannot obtain a stable angle measurement between \(U \) or \(Z \) and \(V_{TS} \), check the encoder to verify it has the proper cycles per revolution for your motors pole count.

CW Reference Rotation

If the reference motion for the encoder is CW (i.e., Encoder Reference Motion parameter will be set to 1), rotate the motor in the CW direction. Using an oscilloscope, look at the phase relationship between the rising edge of \(U \) and negative peak of \(V_{TS} \). Use the figure below to determine the electrical angle at the rising edge of \(U \). Determine the marker electrical angle in a similar manner.
In Figure 141 the electrical angle decreases from left to right and the positive peak of V_{TS} occurs at zero degrees electrical. In Figure 142 the electrical angle increases from left to right and the negative peak of V_{TS} occurs at zero degrees electrical. Note that with a CW reference rotation the negative peak of V_{TS} is at zero electrical degrees and the electrical angle decreases from left to right.

Note

If you cannot obtain a stable angle measurement between U or Z and V_{TS}, check the encoder to verify it has the proper cycles per revolution for your motors pole count.

Establishing a Standard Alignment

A typical encoder alignment practice is to set the rising edge of U to zero crossing of the rising wave of V_{SR} with the motor rotating CCW.
Dynamic Alignment Method

This method is used at Control Techniques to establish the alignment on motors. It is accomplished by spinning the motor CCW with another device while monitoring U and V_{SR}. Then while the motor is spinning CCW, the encoder body is rotated on its mounting until the desired alignment is established. The encoder is then locked down. This will cause the rising edge of V to line up with the rising edge zero crossing of V_{RT} when the encoder reference rotation is CCW.

![CCW Alignment Plot](image)

Figure 143: CCW Alignment Plot

Static Alignment Method

Another method to align the encoder is to apply DC current through the motor power phases R to S and rotate the encoder on its mounting until the rising edge of U is detected with a voltmeter or an oscilloscope. This procedure does not require spinning the motor.
The current applied through R to S should be the same polarity each time (i.e., + on R) and the current must be controlled to no more than 50 percent of the RMS stall current rating of the motor.

Note
Verify that you are seeing the rising edge of the U channel in the encoder reference direction by twisting the motor shaft CCW by hand while the DC current is applied and verifying that U goes high when the shaft is rotated in the encoder reference direction.

Step 4: Determine Motor Parameters
Measuring the actual motor K_e is recommended because not all motor manufacturers use the same measurement techniques. Normally the number of motor poles and the K_e is specified on the motor data sheet. If it not, or you wish to verify it, use the following tests.

Motor K_e
In this test you will be measuring the AC voltage generated by the motor or the CEMF (Counter Electro-Motive Force). This measurement requires an AC voltmeter that can accurately read sine waves of any frequency and some way to determine the motor speed at the time of the measurement such as a photo tachometer or an oscilloscope.

1. Connect the volt meter across any two of the motor power leads.
2. Set the volt meter to read VAC at it’s highest range. You can usually expect to read about 20 to 300 VAC.
3. Spin the motor in either direction at least 500 RPM.
4. Determine the actual RPM using a photo-tachometer or by monitoring the frequency of the Z channel with an oscilloscope.
User Defined Motors

Note

When using an oscilloscope, use the following formula to determine the motor velocity in RPM.

\[
\text{RPM} = \frac{60}{\text{Seconds/Revolutions}}
\]

Use the following formula to determine the Ke of the motor after the voltage and speed measurements.

\[
\text{Ke} = 1000 \frac{\text{VRMS}}{\text{RPM}}
\]

Motor Pole Count

To determine the number motor poles, measure the number of electrical revolutions per mechanical motor revolution. The number of poles in the motor is two times the number of electrical cycles (360 degrees) per mechanical revolution. Use the following procedure:

1. Attach a scope probe to the R winding referenced to the S winding and one to the encoder Z channel referenced to the encoder power supply 0 volt.
2. Connect S winding to the encoder power supply 0 volt wire thereby connecting the scope ground clips together.
3. Set the scope up to trigger on the Z channel.
4. Rotate the motor in either direction at any speed.

Note

If you are using an electric drill to rotate the motor, the drill’s name plate should specify the maximum RPM.

5. Adjust the horizontal time base until at least two Z channel pulses are visible.
6. Count the number of full cycles of the Motor waveform you see between the rising edges of the Z pulses.
7. Calculate the number of motor poles:

\[\text{Number of Cycles} \times 2 = \text{Number of Motor Poles} \]

Step 5: Editing the MOTOR.DDF File

The PowerTools software obtains the names and parameters of user defined motors from the Motor Data Definition File (MOTOR.DDF). This file is automatically loaded during the PowerTools installation and is located in the same directory as the PowerTools software. This file contains two sections: the Header and the Motor data. An example MOTOR.DDF file is shown on page 282.

The MOTOR.DDF file is a text file setup with carriage returns as parameter separators. It can be accessed and edited with any general purpose text editor such as Windows Notepad. In order for some text editors to read the file and recognize it as a text file, you will need to copy it over to another directory and change the file name suffix from .ddf to .txt.

Most text editors allow you to save the modified file as a text file if it was read originally as a .txt file. You must be careful that the edited file is saved as a text file otherwise it will be unusable as a .ddf file.

After you have completed editing the file, saved it as MOTOR.DDF file. Then copy it back to its original directory, overwriting the existing MOTOR.DDF file. The next time PowerTools is started it will automatically recognize the new MOTOR.DDF file.

Header

The header includes the revision and serial number information along with a count of how many special motor definitions are included in the particular file. Standard Control Techniques motors will not appear in this file because their data is hard coded into the drive’s memory.

Revision

This parameter is fixed and is set by the PowerTools revision during installation.

NameCount

The Name Count parameter defines the number of motor sections contained in the .ddf file. If four motor sections exist, this parameter should be set equal to 4 which will cause PowerTools to recognize only the first four (4) motor definitions in the file.

Motor Data

The motor data section contains the names and parameters of one or more user defined motors.
User Defined Motors

MotorID is used for each motor to mark the beginning of a new user defined motor definition. The format is [MotorXX] where XX is the ID number starting with zero and incrementing by one.

You must use both ID numbers. For example, an ID of 1 would be entered as 01. There is no practical limit to the number of user defined motors allowed in the .ddf file. Only one set of user defined motor data can be stored in a single drive at any one time.

The motor name is limited to 12 characters and must immediately follow the MotorID marker. This is the motor name that shows up in the “Motor Type” combo box in PowerTools. The motor parameters do not define with which drive they may be used. Therefore, any user defined motor may be used with any drive.

```
[Definition]
revision=0x4132
nameCount=2

[Motor0]
name=User1
motorPoles=4
encoderLines=2048
encoderMarker=330
encoderU=330
encoderRef=0
rotorInertia=0.00010
motorKE=28.3
phaseResistance=20.80
phaseInductance=27.1
peakCurrent=4.29
continuousCurrent=1.43
maxOperatingSpeed=5000
encoderExponent=0

[Motor1]
name=User2
motorPoles=4
encoderLines=2048
encoderMarker=330
encoderU=330
encoderRef=0
rotorInertia=0.00017
motorKE=28.3
phaseResistance=7.30
phaseInductance=12.5
peakCurrent=7.80
continuousCurrent=2.60
maxOperatingSpeed=5000
encoderExponent=0
```
In this example, the parameters of two user defined motors are named “User1” and “User2”. Abbreviated parameter identifiers are used in the .ddf file. The table below shows the abbreviated identifier for each parameter followed by a description of each.

<table>
<thead>
<tr>
<th>Motor Parameter</th>
<th>DDF Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Poles</td>
<td>motorPoles</td>
</tr>
<tr>
<td>Motor Encoder Lines Per Revolution</td>
<td>encoderLines</td>
</tr>
<tr>
<td>Motor Encoder Marker Angle</td>
<td>encoderMarker</td>
</tr>
<tr>
<td>Motor Encoder U Angle</td>
<td>encoderU</td>
</tr>
<tr>
<td>Motor Encoder Reference Motion</td>
<td>encoderRef</td>
</tr>
<tr>
<td>Motor Inertia</td>
<td>rotorInertia</td>
</tr>
<tr>
<td>Motor KE</td>
<td>motorKE</td>
</tr>
<tr>
<td>Motor Resistance</td>
<td>phaseResistance</td>
</tr>
<tr>
<td>Motor Inductance</td>
<td>phaseInductance</td>
</tr>
<tr>
<td>Motor Peak Current</td>
<td>peakCurrent</td>
</tr>
<tr>
<td>Motor Continuous Current</td>
<td>continuousCurrent</td>
</tr>
<tr>
<td>Motor Maximum Operating Speed</td>
<td>maxOperatingSpeed</td>
</tr>
<tr>
<td>Motor Encoder Exponent</td>
<td>encoderExponent</td>
</tr>
</tbody>
</table>

Motor Parameter Descriptions

Note

These parameters are valid and active only when a user defined motor is selected. When an Control Techniques motor is selected, the data in these registers remain at the last value set and do not update to reflect the data of the Control Techniques motor selected.

Motor Poles

Specifies the number of magnetic pole pairs (N-S) on the motor. The supported values are 2, 4, 6, 8, 10, 12, 14 and 16 poles.

Motor Encoder Lines Per Revolution

Specifies a coefficient for determining the number of encoder lines per mechanical revolution. The supported values are 1 to 16383. The equation for determining the total number of encoder lines per revolution is:

\[n\text{Lines} = n \times 10^x \]

where

- \(n\text{Lines} = \) Total number of Encoder Lines
- \(n = \) Motor Encoder Lines per Rev Coefficient
- \(x = \) Motor Encoder Exponent
User Defined Motors

The total number of encoder lines is used both for commutation and for position/velocity control. To properly commutate the motor, the drive must know the electrical angle (the angle between the motor magnetic field and stator coils).

Motor Encoder Lines Per Revolution Coefficient

Specifies a coefficient for determining the number of encoder lines per mechanical revolution. The supported values are 1 to 16383. The equation for determining the total number of encoder lines per revolution is:

\[n_{\text{Lines}} = n \times 10^x \]

where:

- \(n_{\text{Lines}} \) = Total Number of encoder lines
- \(n \) = Motor encoder lines per rev coefficient
- \(x \) = Motor encoder exponent

The total number of encoder lines is used both for commutation and for position/velocity control. To properly commutate the motor, the drive must know the electrical angle (the angle between the motor magnetic field and stator coils).

Motor Encoder Exponent

Specifies the exponent for determining the number of encoder lines per mechanical revolution. The supported values are: 0, 1, 2, 3, 4. The equation for determining the total number of encoder lines per revolution is:

\[n_{\text{Lines}} = n \times 10^x \]

where:

- \(n_{\text{Lines}} \) = Total Number of Encoder Lines
- \(n \) = Motor Encoder Lines per Rev Coefficient
- \(x \) = Motor Encoder Exponent

The total number of encoder lines is used both for commutation and for position/velocity control. To properly commutate the motor, the drive must know the electrical angle (the angle between the motor magnetic field and stator coils).

Motor Encoder Marker Angle

Specifies the electrical angle at which the marker (Z) pulse occurs with reference to \(V_{TS} \) when the motor is spun in the encoder reference direction. At power-up the drive obtains an initial estimate of the electrical angle from the status of the U, V and W commutation tracks. This estimate can be off by as much as 30 °.

When the drive receives the marker pulse, the drive will, within one second, gradually shift the commutation to the more accurate electrical angle specified by this parameter. The system
will then operate more efficiently. See “Step 3: Determine Encoder Alignment” for a detailed procedure on how to determine this parameter.

Motor Encoder U Angle

Specifies the electrical angle at which the rising edge of the U commutation track will occur with reference to \(V_{TS} \) when the motor is spun in the encoder reference direction.

At power-up the drive looks at the status of the U, V and W commutation tracks and, using this parameter, obtains a crude (± 30 °) estimate of the electrical angle. See “Step 3: Determine Encoder Alignment” for a detailed procedure on how to determine this parameter.

Motor Encoder Reference Motion

Specifies the direction of motion assumed in phase plots of the encoder’s quadrature and summation signals. The supported values are CW(1) and CCW(0). Your encoder may have the same phase plot but is generated from a different direction of rotation. This parameter affects the way the drive interprets the quadrature and commutation signals.

Motor Inertia

This parameter specifies the inertia of the motor. The range is .00001 to .5 lb-in-sec\(^2\). The drive uses this parameter to interpret the “Inertia Ratio” parameter. “Inertia Ratio” is specified as a ratio of load to motor inertia.

Motor KE

Specifies the Ke of the motor. The units are VRMS/ kRPM. The line-to-line voltage will have this RMS value when the motor is rotated at 1000 RPM. The range is 5 to 500.

Motor Resistance

Specifies the phase-to-phase resistance of the motor. You can determine this value by measuring the resistance between any two motor stator terminals with an ohm meter. The range is .1 to 50 ohms.

Motor Inductance

Specifies the phase-to-phase inductance of the motor. The range is 1.0 to 100.0 mH.
User Defined Motors

Motor Peak Current

Specifies the peak current allowed by the motor. The range is 1 to 100 ARMS. If the peak current of the motor is greater than 30 ARMS, specify the peak as 30 ARMS. The drive will limit the peak current to the drive’s capacity.

Motor Continuous Current

Specifies the continuous current allowed by the motor. It is used to determine the current foldback point and the amount of current allowed during foldback. The drive can also limit the continuous current to the motor based on the drive capacity. This means that the operational “continuous current” may be different than the value specified here. The range is 1 to 100 ARMS.

Motor Maximum Operating Speed

Specifies the maximum operating speed of the motor. It is used by the drive to set the default motor overspeed trip point and to limit the Velocity Command. The Velocity Command is limited to 9/8ths (112.5 percent) of the Motor Maximum Operating Speed. If the actual velocity exceeds 150 percent of this value, the drive will fault on Overspeed. Typically this parameter is determined by the encoder bandwidth and/or other mechanical or electrical parameters of the motor. The maximum value is 11,000 RPM.

Step 6: Configuring the Drive

Once you have determined the motor parameters and entered them into the MOTOR.DDF file, you can configure the drive to the user defined motor using PowerTools software. Once PowerTools is started it will read the MOTOR.DDF file and you will be able to select the non-Control Techniques motor.

Selecting a User Defined Motor

Use the following procedure to select the user defined motor with PowerTools:

1. Start PowerTools and either open an existing file or start a new file offline.

Note

PowerTools will not allow you to select a "Motor Type" or "Drive Type" while online with a drive.

2. From the “Motor Type” list box on the EZ Setup tab (or from the Motor tab if you are in Detailed Setup view) select your motor from the list of motors.

When you select a new motor, PowerTools will display the Motor Parameters dialog box. In most cases you will want to select the default option which sets the Full Scale Velocity parameter to the value you entered into the MOTOR.DDF file.
3. Select the correct drive type.
4. Download the configuration to the drive.
5. Select the OK button.

The drive will now be configured for the non-Control Techniques motor.

Step 7: Verification and Checkout

Once the cabling and interface circuitry have been assembled and the drive has been correctly configured, you are ready to power-up the drive. Use the procedure below to power-up the servo system and verify that it is operating correctly.

Note

For safety reasons, it is a good idea to double check that the key motor parameters below have been specified correctly.

- Motor Ke
- Motor Resistance
- Motor Inductance
- Motor Peak Current
- Motor Continuous Current

This procedure requires the use of PowerTools and some kind of I/O simulator. The simulator is needed to generate a variable analog command voltage and to allow the drive to be enabled and disabled. It is possible that the motor will “run-away” during the course of the test.
The motor may run away during this test. Make sure it is securely fastened and that there is nothing connected to the motor shaft.

At a certain point in the test it will be necessary to manually rotate the motor through an integral number of revolutions. This can only be done if the motor shaft and housing are marked in some way so that the motor can be aligned to a specific position. A disk or pulley can be installed during that portion of the test to make this alignment more precise.

There are four tests: Rotation test, Torque test, Commutation test and Velocity test. Each test builds on the last. It is important to perform the tests in the order given.

Note

Do not attempt to perform a test if you have not been able to get the proceeding test to work.

Rotation Test

This test verifies that the encoder has been correctly interfaced to the drive.

![CW Rotation (+)](image)

Figure 146: CW Rotation of the Motor

Note

This test assumes that you have completed “Step 6: Configuring the Drive” on page 287.

1. Power-up the drive but leave it disabled.

2. While online with the drive, select the Status tab. Find the Position Feedback parameter and note its value.

3. Mark the motor shaft and the motor face. This is your reference starting point.

4. Manually rotate the motor CW one revolution as accurately as you can. Verify that the Position Feedback increased by one revolution. This verifies that the A and B encoder
Modular Drive System Reference Manual

signals are wired correctly and the Motor Encoder Reference Motion parameter is correct.

5. Manually rotate the motor as accurately as you can, CW 20 revolutions. The Position Feedback should increase by exactly 20 revs. If the change has some significant fractional part (20.5 for example) the Motor Encoder Lines Per Revolution parameter is probably wrong.

6. Select "View Motor Parameters" from the Tools menu. Note the value of the Commutation Track Angle parameter. This parameter is obtained directly from the state of the U, V and W commutation tracks.

7. Slowly rotate the motor clockwise. The Commutation Track Angle should increase in 60 degree steps and will roll over to 0 at 360. If it does not change, there is a fundamental problem with the U, V and W encoder signals. If it decreases or changes erratically there is either a problem with the Motor Encoder Reference Motion parameter or the phasing of U, V and W.

8. Disconnect serial communications by clicking on the Disconnect button.

9. Power-down the drive and wait for the status display to go blank and then power the drive up again.

10. Re-establish communications with the drive by selecting the Upload button.

11. Select "View Motor Parameters" from the Tools menu. Note the value of the Commutation Angle Correction parameter. Its value should be zero until the motor encoder Z channel is detected. Rotate the motor through one or more complete revolutions until the Z channel is detected.

12. The value should now have a non-zero value between ±40 degrees. If the parameter is still zero, the drive is probably not seeing the marker pulse.

To confirm this repeat Steps 7-9 several times with different motor shaft starting locations. If the absolute value of the parameter is greater than 40, there is either a problem with the phasing of U, V and W or an inconsistency in the encoder alignment parameters.

Torque Test

The purpose of this test is to enable the drive in Torque mode and verify that a positive command produces CW torque.

1. Use PowerTools to select Torque mode and set Full Scale Torque to 5 percent. Then click the Update button to download the changes to the drive.

With Full Scale Torque set to 5 percent, a maximum analog command of 10 volts will generate 5 percent of continuous torque in the motor which should be enough to spin the motor but not to damage it.
User Defined Motors

2. Move to the Analog tab and find the "Analog Input" parameter.

3. Using your simulator adjust the analog command until the value of this parameter is approximately 0 volts.

4. Enable the drive. It should not move. If the drive faults at this point you most likely have a wiring problem (see “Step 1: Motor Wiring”).

5. Gradually increase the analog command voltage. The motor should start moving with a voltage level somewhere between 2 and 5 volts. Verify that the direction of motion is CW.

6. If there is no motion or CCW motion, there is a problem with encoder alignment parameters. If the motor moves 30 to 90 ° and then stops, there could be one of several problems:
 • The number of Motor Poles has been specified incorrectly.
 • The Encoder Lines Per Revolution parameter has been specified incorrectly.
 • The motor terminals have been mis-identified (see “Step 1: Motor Wiring”).

Commutation Accuracy Test

This test will determine how accurately the encoder Z channel has been specified. It requires that the motor be connected and ready to run but it will be spun by the drill motor while in Torque mode with a zero torque command.

1. Disable the drive.

2. Set the Torque Limit to 0.

3. Make the Torque Limit input function always active.

4. Enable the drive.

5. Select “View Motor Parameters” from the Tools menu so you can monitor the Commutation Voltage.

6. Spin the motor clockwise 500 to 1000 RPM, then counter-clockwise at the same speed.

 The Commutation Voltage should be <10 percent. If the Commutation Voltage is higher than 10 percent, the Motor Encoder Marker Angle was incorrectly specified and should be re-tested.

7. Reset the Torque Limit and the Torque Limit Enable input function to their previous settings.
Velocity Test

1. Disable the drive.

2. Select Velocity Analog mode and set "Full Scale Velocity" parameter to 12 RPM.

3. Use the simulator to adjust the analog command voltage to 5 volts.

4. Enable the drive. Find the "Velocity Command Analog" parameter on the Status tab. Adjust the analog command until this parameter reads exactly 6 RPM. The motor should be moving at 6 RPM. If the system got through the Torque test, the motor should not runaway at this point. If it does, go back and repeat the Torque test.

5. Confirm that the motor velocity is really 6 RPM by confirming that it takes 10 seconds to make one revolution. If this is not the case, the problem may be that both the motor poles and the encoder line density are off by the same factor.

6. Reduce the analog command voltage to zero volts and disable the drive.
Specifications

MDS Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Requirements</td>
<td></td>
</tr>
<tr>
<td>AC Input Voltage</td>
<td>3 Ph, 342 to 528 VAC, 47 - 63 Hz (480 VAC for rated performance)</td>
</tr>
<tr>
<td>Model</td>
<td>Rating</td>
</tr>
<tr>
<td>MP-1250</td>
<td>17 Arms</td>
</tr>
<tr>
<td>MP-2500</td>
<td>35 Arms</td>
</tr>
<tr>
<td>MP-5000</td>
<td>70 Arms</td>
</tr>
<tr>
<td>Output Continuous Current (5 kHz/10 kHz)</td>
<td></td>
</tr>
<tr>
<td>MD-404</td>
<td>4 Arms / 2.8 Arms</td>
</tr>
<tr>
<td>MD-407</td>
<td>7 Arms / 5 Arms</td>
</tr>
<tr>
<td>MD-410</td>
<td>10 Arms / 6.5 Arms</td>
</tr>
<tr>
<td>MD-420</td>
<td>20 Arms / 14 Arms</td>
</tr>
<tr>
<td>MD-434</td>
<td>34 Arms / 22 Arms</td>
</tr>
<tr>
<td>Output Peak Current (5 kHz/10 kHz)</td>
<td></td>
</tr>
<tr>
<td>MD-404</td>
<td>8 Arms / 5.6 Arms</td>
</tr>
<tr>
<td>MD-407</td>
<td>14 Arms / 10 Arms</td>
</tr>
<tr>
<td>MD-410</td>
<td>20 Arms / 13 Arms</td>
</tr>
<tr>
<td>MD-420</td>
<td>40 Arms / 28 Arms</td>
</tr>
<tr>
<td>MD-434</td>
<td>68 Arms / 44 Arms</td>
</tr>
<tr>
<td>Continuous Output Power</td>
<td></td>
</tr>
<tr>
<td>MP-1250</td>
<td>12.5 kW</td>
</tr>
<tr>
<td>MP-2500</td>
<td>25 kW</td>
</tr>
<tr>
<td>MP-5000</td>
<td>50 kW</td>
</tr>
<tr>
<td>MD-404</td>
<td>3.3 kW</td>
</tr>
<tr>
<td>MD-407</td>
<td>5.8 kW</td>
</tr>
<tr>
<td>MD-410</td>
<td>8.3 kW</td>
</tr>
<tr>
<td>MD-420</td>
<td>16.7 kW</td>
</tr>
<tr>
<td>MD-434</td>
<td>28.3 kW</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>5 or 10 kHz (Ratings based on 5 kHz performance)</td>
</tr>
<tr>
<td>Logic Power Supply (User Supplied)</td>
<td>21.6 to 26.4 VDC (Current requirements based on system)</td>
</tr>
<tr>
<td>Encoder Supply Output</td>
<td>+5VDC, 250 mA maximum</td>
</tr>
<tr>
<td>System Efficiency</td>
<td>>90%</td>
</tr>
</tbody>
</table>
Specifications

Regeneration

Internal Energy Absorption (480V) System Bus Capacitance Drive Module and Power Module

<table>
<thead>
<tr>
<th>Model</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1250</td>
<td>141 Joules</td>
</tr>
<tr>
<td>MP-2500</td>
<td>235 Joules</td>
</tr>
<tr>
<td>MP-5000</td>
<td>376 Joules</td>
</tr>
<tr>
<td>MD-404</td>
<td>10 Joules</td>
</tr>
<tr>
<td>MD-407</td>
<td>22 Joules</td>
</tr>
<tr>
<td>MD-410</td>
<td>33 Joules</td>
</tr>
<tr>
<td>MD-420</td>
<td>47 Joules</td>
</tr>
<tr>
<td>MD-434</td>
<td>47 Joules</td>
</tr>
</tbody>
</table>

Integral Transistor connected to External Resistor, 15 A continuous

<table>
<thead>
<tr>
<th>Model</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1250</td>
<td>30 Ohm minimum, 6 kW max.</td>
</tr>
<tr>
<td>MP-2500</td>
<td>30 Ohm minimum, 6 kW max.</td>
</tr>
<tr>
<td>MP-5000</td>
<td>9 Ohm minimum, 12 kW max.</td>
</tr>
</tbody>
</table>

I/O Power Supply (User Supplied)

+ 10 to 30 VDC

Power Module Control Inputs

Digital (2) +10 to 30 VDC, 2.8 kOhm, Sourcing, Optically Isolated

Power Module Control Outputs

Digital (6) +10 to 30 VDC, 150 mA, Sourcing, Optically Isolated

Relay Contact (1) AC Interlock, 24 VDC 5A

Drive Module Control Inputs

Analog (1) +/- 10 VDC, 14 bit, 100 kOhm, Differential
Analog Max Input Rating: Differential +/- 14 VDC
Each Input with reference to Analog Ground +/– 14 VDC

Digital (5) +10-30 VDC, 2.8 kOhm, Sourcing (active high), Optically Isolated,
Max input response time is 500 μs, Input debounce: 0 - 2000 ms,
Software selectable
Specifications

Pulse (1)
- Software selectable Differential (RS422) or Single Ended (TTL Schmitt Trigger)
- Maximum input frequency:
 - Differential: 2 MHz per channel; 50% duty cycle (8 MHz count in quadrature)
 - Single ended: 1 MHz per channel; 50% duty cycle (4 MHz count in quadrature)
- Ratio Capabilities: 20 to 163,840,000 PPR
- Input Device = AM26C32
- Vdiff = 0.1 - 0.2 V
- V common mode max = +/- 7V
- Input impedance each input to 0V = 12 - 17 kOhm

Drive Module Control Outputs

<table>
<thead>
<tr>
<th>Analog (2)</th>
<th>+/- 10 VDC (single ended, 20 mA max) 10 bit software selectable output signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital (3)</td>
<td>+10-30 VDC 150 mA max, Sourcing, Optically Isolated, Input debounce: Programmable range, 0 to 200 ms</td>
</tr>
<tr>
<td>Motor Over Temperature (1)</td>
<td>0 to +5 VDC, Single Ended, 10 kOhm</td>
</tr>
</tbody>
</table>

Pulse (1)
- Differential line driver, RS-422 and TTL compatible
- Scalable in one line increment resolution up to 2048 lines/rev of the motor (MG and NT)
- Output Device = AM26C31
- V_{out Hi @ 20 ma} = 3.8 - 4.5 V
- V_{out Lo @ 20 ma} = 0.2 - 0.4 V
- V_{out diff w/100 ohm termination} = 2.0 - 3.1 V
- V_{out common mode w/100 ohm termination} = 0.0 - 3.0 V
- I_{out short circuit} = 30 - 130 mA

Cooling Method

<table>
<thead>
<tr>
<th>Model</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP-1250</td>
<td>Convection</td>
</tr>
<tr>
<td>MP-2500</td>
<td>Integral Fan</td>
</tr>
<tr>
<td>MP-5000</td>
<td>Integral Fan</td>
</tr>
<tr>
<td>MD-404</td>
<td>Convection</td>
</tr>
<tr>
<td>MD-407</td>
<td>Integral Fan</td>
</tr>
<tr>
<td>MD-410</td>
<td>Integral Fan</td>
</tr>
<tr>
<td>MD-420</td>
<td>Integral Fan</td>
</tr>
<tr>
<td>MD-434</td>
<td>Integral Fan</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Description</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Ambient Temperature</td>
<td>32 to 104 F (0 to 40 C)</td>
</tr>
<tr>
<td>Maximum Ambient Temperature</td>
<td>32 to 122 F (0 to 50 C) with power derating of 3%/1.8 F (1 C) above 104 F (40 C)</td>
</tr>
<tr>
<td>Rated Altitude</td>
<td>3280’ (1000 m)</td>
</tr>
</tbody>
</table>
Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Altitude</td>
<td>For altitudes >3280’ (1000 m) derate output by 1% / 328’ (100m) not to exceed 7560’ (2000 m)</td>
</tr>
<tr>
<td>Vibration</td>
<td>10 to 2000 Hz @ 2g</td>
</tr>
<tr>
<td>Humidity</td>
<td>10 to 95% non-condensing</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-13 to 167°F (-25 to 75 °C)</td>
</tr>
</tbody>
</table>
| **Ingress Protection (IP) Rating** | Power and Drive Module: IP20
MH motors: IP65
Molded motor and feedback cables: IP65 |
| **Serial Interface** | RS-232 / RS-485
Internal RS-232 to RS-485 converter
Modbus protocol with 32 bit data extension 9600 or 19.2 k baud |
| **Serial Communications** | Max baud rate 19.2k
Start bit 1
Stop bit 2
Parity none
Data 8 |
| **Weight** | |
| **Power Module** | |
| MP-1250 | 8.35 lbs |
| MP-2500 | |
| MP-5000 | 10.25 lbs |
| **Drive Module** | |
| MD-404 | 8.35 lbs |
| MD-407 | |
| MD-410 | |
| MD-420 | 10.25 lbs |
| MD-434 | 12 lbs |
| **High Bus Voltage** | 880 VDC |
| **Shunt Turn On** | 830 VDC |
| **Shunt Turn Off (Hysteresis)** | 780 VDC |
| **Nominal Bus Voltage 480 VAC** | 680 VDC |
| **Transformer Sizing** | |
| KVA Rating at Max. Power (page 27) | |
| MP-1250 | 25 KVA |
| MP-2500 | 50 KVA |
| MP-5000 | 100 KVA |
Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Model</th>
<th>Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input Wire Gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP-1250</td>
<td>16 GA</td>
<td></td>
</tr>
<tr>
<td>MP-2500</td>
<td>10 GA</td>
<td></td>
</tr>
<tr>
<td>MP-5000</td>
<td>4 GA</td>
<td></td>
</tr>
<tr>
<td>Shunt Size</td>
<td></td>
<td>16 GA</td>
</tr>
</tbody>
</table>

Logic and Digital I/O Power Sizing

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. RMS Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Module</td>
<td></td>
</tr>
<tr>
<td>MP-1250</td>
<td>0.30</td>
</tr>
<tr>
<td>MP-2500</td>
<td></td>
</tr>
<tr>
<td>MP-5000</td>
<td></td>
</tr>
<tr>
<td>Drive Module</td>
<td></td>
</tr>
<tr>
<td>MD-404</td>
<td></td>
</tr>
<tr>
<td>MD-407</td>
<td></td>
</tr>
<tr>
<td>MD-410</td>
<td>0.60/Module</td>
</tr>
<tr>
<td>MD-420</td>
<td></td>
</tr>
<tr>
<td>MD-434</td>
<td>0.80/Module</td>
</tr>
<tr>
<td>FM Module</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>0.40/FM Module</td>
</tr>
<tr>
<td>Synchronization Feedback Encoder</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0.07/Encoder</td>
</tr>
</tbody>
</table>

Fuses

<table>
<thead>
<tr>
<th>Fuses</th>
<th>Model</th>
<th>Type</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Module (page 27)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP-1250</td>
<td></td>
<td>KTK-R, JKS or JJS</td>
<td>20 A</td>
</tr>
<tr>
<td>MP-2500</td>
<td></td>
<td>JKS or JJS</td>
<td>40 A</td>
</tr>
<tr>
<td>MP-5000</td>
<td></td>
<td>JJS</td>
<td>70 A</td>
</tr>
<tr>
<td>Drive Module (page 70)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD-404</td>
<td></td>
<td>Shawmut A70QS</td>
<td>10 A</td>
</tr>
<tr>
<td>MD-407</td>
<td></td>
<td></td>
<td>16 A</td>
</tr>
<tr>
<td>MD-410</td>
<td></td>
<td></td>
<td>20 A</td>
</tr>
<tr>
<td>MD-420</td>
<td></td>
<td></td>
<td>32 A</td>
</tr>
<tr>
<td>MD-434</td>
<td></td>
<td></td>
<td>50 A</td>
</tr>
</tbody>
</table>
Drive and Motor Combination Specifications

<table>
<thead>
<tr>
<th>Drive</th>
<th>Motor</th>
<th>Cont. Stall Torque lb-in (Nm)</th>
<th>Peak Stall Torque lb-in (Nm)</th>
<th>Power HP @ Rated Speed kWatts</th>
<th>Inertia lb-in-sec² (kg-cm²)</th>
<th>Max speed RPM</th>
<th>Encoder resolution lines/rev</th>
<th>Motor Ke VRMS/krpm</th>
<th>Motor Kt lb-in/ARMS (Nm/ARMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-404</td>
<td>MH-316</td>
<td>21.5 (2.43)</td>
<td>58 (6.55)</td>
<td>0.83</td>
<td>0.0006725 (0.75987)</td>
<td>4000</td>
<td>2048</td>
<td>75</td>
<td>10.98 (1.24)</td>
</tr>
<tr>
<td></td>
<td>MH-340</td>
<td>46 (5.20)</td>
<td>135 (15.25)</td>
<td>1.31</td>
<td>0.0014275 (1.61296)</td>
<td>3000</td>
<td>2048</td>
<td>116</td>
<td>16.98 (1.92)</td>
</tr>
<tr>
<td></td>
<td>MH-455</td>
<td>65 (7.34)</td>
<td>140.56 (15.88)</td>
<td>1.8</td>
<td>0.003557 (4.01914)</td>
<td>3000</td>
<td>2048</td>
<td>120</td>
<td>17.57 (1.99)</td>
</tr>
<tr>
<td>MD-407</td>
<td>MH-455</td>
<td>72.5 (8.19)</td>
<td>228.42 (25.81)</td>
<td>1.8</td>
<td>0.003557 (4.01914)</td>
<td>3000</td>
<td>2048</td>
<td>120</td>
<td>17.57 (1.99)</td>
</tr>
<tr>
<td></td>
<td>MH-490</td>
<td>105 (11.86)</td>
<td>225.4 (25.4)</td>
<td>1.78</td>
<td>0.006727 (7.60099)</td>
<td>3000</td>
<td>2048</td>
<td>110</td>
<td>16.1 (1.82)</td>
</tr>
<tr>
<td>MD-410</td>
<td>MH-455</td>
<td>72.5 (8.19)</td>
<td>268.82 (30.37)</td>
<td>1.8</td>
<td>0.003557 (4.01914)</td>
<td>3000</td>
<td>2048</td>
<td>120</td>
<td>17.57 (1.99)</td>
</tr>
<tr>
<td></td>
<td>MH-490</td>
<td>105 (11.86)</td>
<td>322 (36.38)</td>
<td>1.78</td>
<td>0.006727 (7.60099)</td>
<td>3000</td>
<td>2048</td>
<td>110</td>
<td>16.1 (1.82)</td>
</tr>
<tr>
<td></td>
<td>MH-6120</td>
<td>119 (13.45)</td>
<td>336.8 (38.05)</td>
<td>3.25</td>
<td>0.010657 (12.04159)</td>
<td>3000</td>
<td>2048</td>
<td>115</td>
<td>16.84 (1.90)</td>
</tr>
<tr>
<td>MD-420</td>
<td>MH-6120</td>
<td>119 (13.45)</td>
<td>353.64 (39.96)</td>
<td>3.25</td>
<td>0.010657 (12.04159)</td>
<td>3000</td>
<td>2048</td>
<td>115</td>
<td>16.84 (1.90)</td>
</tr>
<tr>
<td></td>
<td>MH-6200</td>
<td>234 (26.44)</td>
<td>673.6 (76.11)</td>
<td>3.41</td>
<td>0.018857 (21.30695)</td>
<td>3000</td>
<td>2048</td>
<td>115</td>
<td>16.84 (1.90)</td>
</tr>
<tr>
<td></td>
<td>MH-6300</td>
<td>299 (33.78)</td>
<td>673.6 (76.11)</td>
<td>3.74</td>
<td>0.027187 (30.71921)</td>
<td>3000</td>
<td>2048</td>
<td>115</td>
<td>16.84 (1.90)</td>
</tr>
<tr>
<td></td>
<td>MH-6200</td>
<td>234 (26.44)</td>
<td>729 (82.37)</td>
<td>3.41</td>
<td>0.018857 (21.30695)</td>
<td>3000</td>
<td>2048</td>
<td>115</td>
<td>16.84 (1.90)</td>
</tr>
<tr>
<td></td>
<td>MH-6300</td>
<td>299 (33.78)</td>
<td>932.09 (105.3)</td>
<td>3.74</td>
<td>0.027187 (30.71921)</td>
<td>3000</td>
<td>2048</td>
<td>115</td>
<td>16.84 (1.90)</td>
</tr>
<tr>
<td></td>
<td>MH-8500</td>
<td>530 (60.2)</td>
<td>997 (113.2)</td>
<td>9.95</td>
<td>0.078 (87.837)</td>
<td>3000</td>
<td>2048</td>
<td>121.6</td>
<td>17.8 (2.011)</td>
</tr>
<tr>
<td></td>
<td>MH-8750</td>
<td>748 (84.9)</td>
<td>1500 (170.3)</td>
<td>15.44</td>
<td>0.133 (150.24)</td>
<td>3000</td>
<td>2048</td>
<td>162</td>
<td>23.7 (2.68)</td>
</tr>
</tbody>
</table>
Specifications

Axial/Radial Loading

<table>
<thead>
<tr>
<th>Motor</th>
<th>Max Radial Load (lb.)</th>
<th>Max. Axial Load (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH-316</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>MH-340</td>
<td>40</td>
<td>25</td>
</tr>
<tr>
<td>MH-455</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MH-490</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MH-6120</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>MH-6200</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>MH-6300</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>MH-8500</td>
<td>250</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 147: Axial/Radial Loading

IP Ratings

<table>
<thead>
<tr>
<th>Motor</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH-316</td>
<td>IP65</td>
</tr>
<tr>
<td>MH-340</td>
<td></td>
</tr>
<tr>
<td>MH-455</td>
<td></td>
</tr>
<tr>
<td>MH-490</td>
<td></td>
</tr>
<tr>
<td>MH-6120</td>
<td></td>
</tr>
<tr>
<td>MH-6200</td>
<td></td>
</tr>
<tr>
<td>MH-6300</td>
<td></td>
</tr>
<tr>
<td>MH-8500</td>
<td></td>
</tr>
</tbody>
</table>

Encoder Specifications

<table>
<thead>
<tr>
<th>Motor</th>
<th>Density</th>
<th>Output Type</th>
<th>Output Frequency</th>
<th>Output Signals</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH</td>
<td>2048 lines/rev</td>
<td>RS422 differential driver</td>
<td>250 kHz per channel</td>
<td>A, B, Z, Comm U, Comm W, Comm V and all complements</td>
<td>5V, 150 mA ±10%</td>
</tr>
</tbody>
</table>
Power Dissipation

In general, the drive power stages are around 90 percent efficient depending on the actual point of the torque speed curve the drive is operating. Logic power losses on the MDS Drive Module is 11 W minimum to 21 W depending on external loading such as FM modules and input voltages.

The values shown in the table below represent the typical dissipation that could occur with the drive/motor combination specified at maximum output power.

<table>
<thead>
<tr>
<th>Drive Model</th>
<th>Logic Power Losses (typ) Drive (Pld) (Watts)</th>
<th>Maximum Power Stage Losses (Pp) (Watts)</th>
<th>Total Power Losses (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-404 / MH-316</td>
<td>20</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>MD-404 / MH-340</td>
<td>36</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>MD-404 / MH-455</td>
<td>42</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>MD-407 / MH-455</td>
<td>48</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>MD-407 / MH-490</td>
<td>72</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>MD-410 / MH-455</td>
<td>60</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>MD-410 / MH-490</td>
<td>72</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>MD-410 / MH-6120</td>
<td>90</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>MD-420 / MH-6120</td>
<td>108</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>MD-420 / MH-6200</td>
<td>126</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>MD-420 / MH-6300</td>
<td>200</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>MD-434 / MH-6200</td>
<td>150</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>MD-434 / MH-6300</td>
<td>200</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>MD-434 / MH-8500</td>
<td>380</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>MD-434 / MH-8750</td>
<td>420</td>
<td>440</td>
<td></td>
</tr>
</tbody>
</table>

Power Dissipation Calculation

Calculating actual dissipation requirements in an application can help minimize enclosure cooling requirements, especially in multi-axis systems. To calculate dissipation in a specific application, use the following formula for each axis and then total them up. This formula is a generalization and will result in a conservative estimate for power losses.

\[
TPL = \frac{TRMS \cdot V_{max}}{1500} + P_{ld} + P_{sr}
\]

Where:

- \(TPL \) = Total power losses (Watts)
- \(TRMS \) = RMS torque for the application (lb-in)
- \(V_{max} \) = Maximum motor speed in application (RPM)
- \(P_{ld} \) = Logic Power Losses Drive (Watts)
Specifications

\[Psr = \text{Shunt Regulation Losses (Watts)} - (\text{RSR-2 losses or equivalent}) \]

Note

\[\text{TRMS} \times \text{Vmax} / 1500 = \text{Power Stage Dissipation} = Pp \]

A more accurate calculation would include even more specifics such as actual torque delivered at each speed plus actual shunt regulator usage. For help in calculating these please contact our Application Department with your system profiles and loads.
MDS Power Module Dimensions

Figure 148: MP-1250 and MP-2500 Dimensional Drawing
Figure 149: MP-5000 Dimensional Drawing
MDS Drive Module Dimensions

Figure 150: MD-404, 407 and 410 Dimensional Drawing
Figure 151: MD-420 Dimensional Drawing
Figure 152: MD-434 Dimensional Drawing
Specifications

Cable Diagrams

<table>
<thead>
<tr>
<th>Drive Signal</th>
<th>CMDX, CMDO, ECI-44</th>
<th>CDRO</th>
<th>AX4-CEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Command In +</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Analog Command In -</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Encoder Out A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Encoder Out A/</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Encoder Out B</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Encoder Out B/</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Encoder Out Z</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Encoder Out Z/</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pulse In A</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pulse In A/</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pulse In B</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pulse In B/</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pulse In Z</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pulse In Z/</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pulse In A (single ended)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pulse In B (single ended)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I/O Input Drive Enable</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I/O Input #1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Input #2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Input #3</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Input #4</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I/O Output #1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I/O Output #2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I/O Output #3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I/O Power + In (1st wire)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I/O Power + In (2nd wire)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I/O Power 0V In (1st wire)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I/O Power 0V In (2nd wire)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Analog Out 0V</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Analog Out Channel #1 +</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Analog Out Channel #2 +</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>External Encoder +5 Power Out (200 ma)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>External Encoder Common</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>+15V Power Out (10 ma)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-485 +</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-485 -</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modular Drive System Reference Manual

CMDX-XXX Cable

Note

Some CMDX cables may have White/Yellow and Yellow/White wires in place of the White/Orange and Orange/White shown in the figure above (pins 6 and 21).
Some CMDO cables may have White/Yellow and Yellow/White wires in place of the White/Orange and Orange/White shown in the figure above (pins 6 and 21).
Modular Drive System Reference Manual

TIA-XXX Cable

DDS-XXX Cable
Specifications

TERM-H (Head) Terminator

TERM-T (Tail) Terminator

Note
See the "Multi-drop Communications" section for resistor values.

235
Specifications

CFCS-XXX Cable

Specifications

OVERALL TIN COPPER BRAD

1. BLU
2. ORN
3. GRN
4. LGR
5. BGRN
6. BLK
7. YEL
8. WHT/BRN
9. GRY/WHT
10. ORN/RED
11. RED/ORN
12. BRN/WHT
13. WHT/GRY
14. RED/GRN
15. ORN/RED
16. BLU/RED
17. RED/BLU
18. N/C
19. N/C
20. N/C
21. N/C
22. N/C
23. N/C
24. N/C
25. N/C
26. N/C

LARGE 18GA PAIR
RED/GRN OR

1. BLU
2. A
3. ORN
4. B
5. GRN
6. W
7. L
8. N/C
9. NC
10. BRN
11. Y
12. A
13. M
14. Z
15. C
16. H
17. K
18. J
19. X
20. G
21. U
22. V
23. W
24. PIN 1

OVERALL TIN COPPER BRAD

= TWISTED PAIR

SOLDER SIDE

SOLDER SIDE

237
CFOS-XXX Cable

Specifications

OVERALL TIN/COPPER BRAID

SHELL

BLU B
ORN C
GRN N
BRN P
BLK M
YEL U
WHT/BRN E
BRN/WHT R
WHT/GRY F
GRY/WHT S
RED/ORN G
ORN/RED H
RED/BLU K
BLU/RED T
RED/GRN A
GRN/RED V
N/C L
N/C D
N/C J
N/C W
N/C X
N/C Y
DRAINS Z

LARGE 18GA PAIR
RED/GRN OR

P = TWISTED PAIR

SOLDER SIDE
μs

Microsecond, which is 0.000001 second.

A

Amps.

ARMS

Amps (RMS).

AWG

American Wire Gauge.

Baud Rate

The number of binary bits transmitted per second on a serial communications link such as RS-232. (1 character is usually 10 bits.)

Check Box

In a dialog box, a check box is a small box that the user can turn “On” or “Off” with the mouse. When “On” it displays an X in a square; when “Off” the square is blank. Unlike option (radio) buttons, check boxes do not affect each other; any check box can be “On” or “Off” independently of all the others.

CRC

Cyclical Redundancy Check.

Dialog Box

A dialog box is a window that appears in order to collect information from the user. When the user has filled in the necessary information, the dialog box disappears.

DIN Rail

Deutsche Industrie Norm Rail

DLL

In Microsoft Windows, a Dynamic Link Library contains a library of machine-language procedures that can be linked to programs as needed at run time.
Modular Drive System Reference Manual

Downloading

The transfer of a complete set of parameters from PowerTools or a Function Module to a drive.

EEPROM

An EEPROM chip is an Electrically Erasable Programmable Read-Only Memory; that is, its contents can be both recorded and erased by electrical signals, but they do not go blank when power is removed.

EMC

Electromagnetic Compatibility

EMI - Electro-Magnetic Interference

EMI is noise which, when coupled into sensitive electronic circuits, may cause problems.

Firmware

The term firmware refers to software (i.e., computer programs) that are stored in some fixed form, such as read-only memory (ROM).

FM

Function Module - device which is attached to the front of the drive to provide additional functionality.

Hysteresis

For a system with an analog input, the output tends to maintain it’s current value until the input level changes past the point that set the current output value. The difference in response of a system to an increasing input signal versus a decreasing input signal.

I/O

Input/Output. The reception and transmission of information between control devices. In modern control systems, I/O has two distinct forms: switches, relays, etc., which are in either an on or off state, or analog signals that are continuous in nature generally depicting values for speed, temperature, flow, etc.

Inertia

The property of an object to resist changes in rotary velocity unless acted upon by an outside force. Higher inertia objects require larger torque to accelerate and decelerate. Inertia is dependent upon the mass and shape of the object.

Input Function

A function (i.e., Stop, Preset) that may be attached to an input line.
Glossary

Input Line
The actual electrical input, a screw terminal.

Least Significant Bit
The bit in a binary number that is the least important or having the least weight.

LED
Light Emitting Diode.

List Box
In a dialog box, a list box is an area in which the user can choose among a list of items, such as files, directories, printers or the like.

mA
Milliamp, which is 1/1000th of an Ampere.

MB
Mega-byte.

MDS
Modular Drive System

Most Significant Bit
The bit in a binary number that is the most important or that has the most weight.

ms
Millisecond, which is 1/1000th of a second.

NVM
Non-Volatile Memory.

NTC
Negative Temperature Resistor

Option Button
See Radio Button.

Opto-isolated
A method of sending a signal from one piece of equipment to another without the usual requirement of common ground potentials. The signal is transmitted optically with a light
source (usually a Light Emitting Diode) and a light sensor (usually a photosensitive transistor). These optical components provide electrical isolation.

Output Function
A function (i.e., Drive OK, Fault) that may be attached to an output line.

Output Line
The actual transistor or relay controlled output signal.

Parameters
User read only or read/write parameters that indicate and control the drive operation.

PE
Protective Earth.

PID
Proportional-Integral-Derivative. An acronym that describes the compensation structure that can be used in many closed-loop systems.

PLC
Programmable Logic Controller. Also known as a programmable controller, these devices are used for machine control and sequencing.

PowerTools-FM and -PRO
Windows®-based software to interface with the Modular Drive System and Function Modules.

Radio Button
Also known as the Option Button. In a dialog box, radio buttons are small circles only one of which can be chosen at a time. The chosen button is black and the others are white. Choosing any button with the mouse causes all the other buttons in the set to be cleared.

RAM
RAM is an acronym for Random-Access Memory, which is a memory device whereby any location in memory can be found, on average, as quickly as any other location.

RMS
Root Mean Squared. For an intermittent duty cycle application, the RMS is equal to the value of steady state current which would produce the equivalent heating over a long period of time.
ROM
ROM is an acronym for Read-Only Memory. A ROM contains computer instructions that do not need to be changed, such as permanent parts of the operating system.

RPM
Revolutions Per Minute.

Serial Port
A digital data communications port configured with a minimum number of signal lines. This is achieved by passing binary information signals as a time series of 1’s and 0’s on a single line.

Uploading
The transfer of a complete set of parameters from PowerTools or an FM-P.

VAC
Volts, Alternating Current.

VDC
Volts, Direct Current.

Windows, Microsoft
Microsoft Windows is an operating system that provides a graphical user interface, extended memory and multi-tasking. The screen is divided into windows and the user uses a mouse to start programs and make menu choices.
Index

A
- AC Interlock Connections, 45
- AC Power Line Fusing, 27
- AC Power Wire Size, 27
- AC Supplies NOT Requiring Transformers, 24
- AC Supplies Requiring Transformers, 25
- Achieving Low Impedance Connections, 6
- Active State, 97
- Advanced Tab, 162
- Analog Command Wiring, 55, 95
- Analog Input, 94
- Analog Outputs, 96
- Analog Submode, 82
- Analog Tab, 148
- Assigning Inputs, 117
- Assigning Outputs, 118
- AX4-CEN-XXX Cable, 233
- Axial/Radial Loading, 221

B
- Backplane Installation, 19
- Brake Operation, 92

C
- Cable Diagrams, 229
- Cable to Enclosure Shielding, 8
- CCW Reference Rotation, 197
- CDRO-XXX Cable, 232
- CFCS-XXX Cable, 238
- CFCS-XXX Cable, 237
- CFOS-XXX Cable, 239

- Changing the Default View, 109
- CMDO-XXX Cable, 231
- CMDS-XXX Cable, 236
- CMDX-XXX Cable, 230
- CMMS-XXX Cable, 236
- Command Cables, 54
- Command Connector Wiring, 52
- Communications with Drive, 120
- Commutation Accuracy Test, 213
- Commutation Basics, 189
- Configuring the Drive, 209
- Current Foldback, 91
- CW Reference Rotation, 199

D
- DDS-XXX Cable, 234
- Debounce Time, 98
- Declaration of Conformity, viii
- Detailed Setup, 125
- Detailed Setup View, 110
- Determine Encoder Alignment, 196
- Determine Motor Parameters, 202
- Determining Friction, 172
- Determining Inertia Ratio, 174
- Determining Tuning Parameter Values
 - Initial Test Settings, 172
- Diagnostic Analog Output Test Points, 182
- Diagnostic Cable (DGNE) Diagram, 184
- Diagnostic Display, 177
- Diagnostics and Troubleshooting, 177
- Differential input, 78
- Digital Inputs and Outputs, 97
- Disconnecting Communications, 123
- Downloading the Configuration File, 121
- Drive and Motor Combination
Modular Drive System Reference Manual

<table>
<thead>
<tr>
<th>Specifications, 220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive and Power Module Removal, 69</td>
</tr>
<tr>
<td>Drive Faults, 184</td>
</tr>
<tr>
<td>Drive Modifiers, 86</td>
</tr>
<tr>
<td>Drive Module Assembly Installation, 35</td>
</tr>
<tr>
<td>Drive Module Backplane Dimensions, 16</td>
</tr>
<tr>
<td>Drive Module Dimensions, 18</td>
</tr>
<tr>
<td>Drive Module I/O, 49</td>
</tr>
<tr>
<td>Drive Module I/O Connections, 48</td>
</tr>
<tr>
<td>Drive overload protection, vii</td>
</tr>
<tr>
<td>Drive Setup Information, 111</td>
</tr>
<tr>
<td>Dynamic Alignment Method, 201</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>E Series EN Drive Options, 103</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECI-44 External Connector Interface, 103</td>
</tr>
<tr>
<td>Editing the MOTOR.DDF File, 204</td>
</tr>
<tr>
<td>Electromagnetic Compatibility, 6</td>
</tr>
<tr>
<td>Encoder Electrical Interfacing, 193</td>
</tr>
<tr>
<td>Encoder Logical Interfacing, 194</td>
</tr>
<tr>
<td>Encoder Output Signal Wiring, 56</td>
</tr>
<tr>
<td>Encoder Specifications, 221</td>
</tr>
<tr>
<td>Entering Load Parameters, 116</td>
</tr>
<tr>
<td>Environmental Considerations, 10</td>
</tr>
<tr>
<td>Epsilon Eb Drive Options, 103</td>
</tr>
<tr>
<td>Error Messages, 187</td>
</tr>
<tr>
<td>Establishing a Standard Alignment, 200</td>
</tr>
<tr>
<td>External Shunt Operation, 74</td>
</tr>
<tr>
<td>EZ Setup, 125</td>
</tr>
<tr>
<td>EZ Setup View, 109</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Fault Codes, 178</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Descriptions, 180</td>
</tr>
<tr>
<td>Feedforwards, 170</td>
</tr>
<tr>
<td>FM-1 Speed Module, 105</td>
</tr>
<tr>
<td>FM-2 Indexing Module, 105</td>
</tr>
<tr>
<td>FM-3 and FM-3DN Programming Module,</td>
</tr>
</tbody>
</table>

G

| Glossary, 241 |

H

| High Performance Gains, 169 |
| History Tab, 160 |
| How Motion Works, 77 |

I

<table>
<thead>
<tr>
<th>I/O Status Tab, 151</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Motion Velocity, 90</td>
</tr>
<tr>
<td>Inertia Ratio, 168</td>
</tr>
<tr>
<td>Initial settings, 166</td>
</tr>
<tr>
<td>Input Functions, 98</td>
</tr>
<tr>
<td>Inputs Tab, 135</td>
</tr>
<tr>
<td>Installation, 5</td>
</tr>
<tr>
<td>Installation Notes, 6</td>
</tr>
<tr>
<td>Introduction, 1</td>
</tr>
<tr>
<td>IP Ratings, 221</td>
</tr>
</tbody>
</table>

L

| Logic and Digital I/O Power Connections, 37 |
Index

M

MDS Overview, 13
Mechanical Installation, 12
Modbus Communications, 62
Motor Brake Wiring, 50
Motor Direction Polarity, 90
Motor Feedback Wiring, 61, 192
Motor Ke, 202
Motor Mounting, 68
Motor Pole Count, 203
Motor Tab, 144
Motor Wiring, 190
Multi-Drop Communications, 63

Power Module I/O, 43
Power Module I/O Connections, 40
Power Module Status Indicators, 41
PowerTools Software, 75
Presets Submode, 83
Printing the Configuration File, 123
Pulse Mode, 77
Pulse Mode Parameters, 81
Pulse Mode Setup, 112
Pulse Mode Wiring, 57
Pulse Source Selection, 78
Pulse/Direction Submode, 79
Pulse/Pulse Submode, 81
Pulse/Quadrature Submode, 80

O

Offline Configuration Window, 111
Offline Setup, 109
Online Setup, 119
Opening an Online Configuration Window, 121
Operation Verification, 123
Operational Overview, 73
Options and Accessories, 103
Output Functions, 100
Outputs Tab, 137
Overspeed Velocity Parameter, 89

Quick Start, 109

R

Ramp Units Conversion, 175
Reading Encoder Alignment, 196
Rebooting the Drive, 185
Resetting Faults, 184
Response, 169
RMS Foldback, 91
Rotation Test, 211

S

Safety Considerations, xi
Safety of Machinery, xi
Safety Precautions, xi
Saving the Configuration File, 123
Selecting a User Defined Motor, 209
Selecting an Operating Mode, 112
Serial Communications, 62
Setup, Commissioning and Maintenance, xi
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shunt Operation</td>
<td>74</td>
</tr>
<tr>
<td>Shunt RMS Fault</td>
<td>74</td>
</tr>
<tr>
<td>Single ended input</td>
<td>79</td>
</tr>
<tr>
<td>Specifications</td>
<td>215</td>
</tr>
<tr>
<td>Speed Torque Curves</td>
<td>224</td>
</tr>
<tr>
<td>Stall Foldback</td>
<td>92</td>
</tr>
<tr>
<td>Static Alignment Method</td>
<td>201</td>
</tr>
<tr>
<td>Status Tab</td>
<td>155</td>
</tr>
<tr>
<td>Summation Submode</td>
<td>84</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>127</td>
</tr>
<tr>
<td>System Grounding</td>
<td>23</td>
</tr>
<tr>
<td>TERM-H (Head) Terminator</td>
<td>235</td>
</tr>
<tr>
<td>Term-T (Tail) Terminator</td>
<td>235</td>
</tr>
<tr>
<td>Thermal Switch Interfacing</td>
<td>194</td>
</tr>
<tr>
<td>TIA-XXX Cable</td>
<td>234</td>
</tr>
<tr>
<td>Torque Limit Function</td>
<td>89</td>
</tr>
<tr>
<td>Torque Limit Setup</td>
<td>115</td>
</tr>
<tr>
<td>Torque Limiting</td>
<td>88</td>
</tr>
<tr>
<td>Torque Mode</td>
<td>85</td>
</tr>
<tr>
<td>Torque Mode Setup</td>
<td>115</td>
</tr>
<tr>
<td>Torque Tab</td>
<td>143</td>
</tr>
<tr>
<td>Torque Test</td>
<td>212</td>
</tr>
<tr>
<td>Transformer Sizing</td>
<td>27</td>
</tr>
<tr>
<td>Travel Limit Application Notes</td>
<td>87</td>
</tr>
<tr>
<td>Tuning Hints</td>
<td>167</td>
</tr>
<tr>
<td>Tuning Parameters</td>
<td>168</td>
</tr>
<tr>
<td>Tuning Procedure</td>
<td>166</td>
</tr>
<tr>
<td>Tuning Procedures</td>
<td>165</td>
</tr>
<tr>
<td>Tuning steps</td>
<td>167</td>
</tr>
<tr>
<td>Underwriters Laboratories Recognition</td>
<td>vii</td>
</tr>
<tr>
<td>User Defined Motors</td>
<td>189</td>
</tr>
<tr>
<td>User Interface</td>
<td>73</td>
</tr>
<tr>
<td>Velocity Analog Submode Setup</td>
<td>113</td>
</tr>
<tr>
<td>Velocity Limiting</td>
<td>89</td>
</tr>
<tr>
<td>Velocity Mode</td>
<td>82</td>
</tr>
<tr>
<td>Velocity Mode Setup</td>
<td>113</td>
</tr>
<tr>
<td>Velocity Presets Submode Setup</td>
<td>114</td>
</tr>
<tr>
<td>Velocity Summation Submode Setup</td>
<td>114</td>
</tr>
<tr>
<td>Velocity Tab</td>
<td>141</td>
</tr>
<tr>
<td>Velocity Test</td>
<td>214</td>
</tr>
<tr>
<td>Vendor Contact Information</td>
<td>239</td>
</tr>
<tr>
<td>Verification and Checkout</td>
<td>210</td>
</tr>
<tr>
<td>View Motor Parameters</td>
<td>186</td>
</tr>
<tr>
<td>Viewing Active Drive Faults</td>
<td>185</td>
</tr>
<tr>
<td>Watch Window</td>
<td>185</td>
</tr>
<tr>
<td>Wiring Notes</td>
<td>11</td>
</tr>
</tbody>
</table>
Since 1979, the “Motion Made Easy” products, designed and manufactured in Minnesota U.S.A., are renowned in the motion control industry for their ease of use, reliability and high performance.

For more information about Control Techniques “Motion Made Easy” products and services, call (800) 397-3786 or contact our website at www.emersonct.com.

Control Techniques Drives, Inc
Division of EMERSON Co.
12005 Technology Drive
Eden Prairie, Minnesota 55344
U.S.A.

Customer Service
Phone: (952) 995-8000 or (800) 397-3786
Fax: (952) 995-8129

Technical Support
Phone: (952) 995-8033 or (800) 397-3786
Fax (952) 9995-8020

Printed in U.S.A.